1.深度学习概述(线性回归、求函数最小值)


原文: https://blog.csdn.net/Deadwalk/article/details/139606252?spm=1001.2014.3001.5502

1. 线性回归

1.1 线性回归一般表达式

  • y = f ( x ) = x 1 w 1 + x 2 w 2 + . . . + x n w n + b y = f(x) = x_1w_1 + x_2w_2 + ... + x_nw_n + b y=f(x)=x1w1+x2w2+...+xnwn+b
    • ( x 1 、 x 2 、 x n ) :输入特征向量 ( x ) 的各个特征值,代表输入数据的特征。 (x_1、x_2、x_n):输入特征向量 ( x ) 的各个特征值,代表输入数据的特征。 (x1x2xn):输入特征向量(x)的各个特征值,代表输入数据的特征。
    • ( w 1 、 w 2 、 w n ) :权重向量 ( w ) 的各个权重值,用来衡量每个特征对输出的影响程度。 (w_1、w_2、w_n):权重向量 ( w ) 的各个权重值,用来衡量每个特征对输出的影响程度。 (w1w2wn):权重向量(w)的各个权重值,用来衡量每个特征对输出的影响程度。
    • ( b ) :偏置项,也称为截距项,用来调整模型的输出值,即在没有特征输入时的输出值。 ( b ):偏置项,也称为截距项,用来调整模型的输出值,即在没有特征输入时的输出值。 (b):偏置项,也称为截距项,用来调整模型的输出值,即在没有特征输入时的输出值。
    • ( y ) :模型的输出值,即线性回归模型对输入特征的预测值。 ( y ):模型的输出值,即线性回归模型对输入特征的预测值。 (y):模型的输出值,即线性回归模型对输入特征的预测值。

1.2 线性回归内积表达方式:

  • y = f ( x ) = x @ w + b y = f(x) = x@w+ b y=f(x)=x@w+b
    • x @ w :特征向量 ( x ) 与权重向量 ( w ) 的内积 x@w:特征向量 ( x ) 与 权重向量( w ) 的内积 x@w:特征向量(x)与权重向量(w)的内积

1.3 多个样本时,线性回归的进一步表达:

  • y = f ( X ) = X @ w + b y = f(X) = X@w+ b y=f(X)=X@w+b
    • X :特征矩阵,矩阵的行是一条一条的样本,矩阵的列是多个特征向量。 X:特征矩阵,矩阵的行是一条一条的样本,矩阵的列是多个特征向量。 X:特征矩阵,矩阵的行是一条一条的样本,矩阵的列是多个特征向量。

1.4 线性回归方程的解析

在这里插入图片描述
在这里插入图片描述

  • 在训练时,xy是训练集中的特征和标签,看作是常量wb是待优化的参数值,看作是变量
  • 在推理时,wb已经找到了比较合适的值固定下来,看作常量;此时x是待预测的样本的特征,是变量
  • 预测的本质:把x,求解y

1.5 线性回归就是求loss函数的最小值

  • 训练过程
    在这里插入图片描述
    • 从训练集中取出一对x 和y
    • 把x带入模型,求解预测结果y_pred
    • 找到一种方法,度量y和y_pred的误差loss
    • 由此推导:
      • loss是y和y_pred的函数;
      • y_pred是模型预测的结果,是w和b的函数;
      • 所以简单来说,loss也是w和b的函数
  • 训练的本质
    由上图推导结果可知,训练的本质就是求解loss什么时候是最小值。当w和b取得什么值的时候,loss最小。

2. 如何求函数最小值

2.1 一个例子

  • y = 2 x 2 y= 2x^2 y=2x2
    在这里插入图片描述
  • 上述这个示例中,求y最小值是比较简单的,从图形中可以看到x=0时,y=0为最小值。但是实际工程中,并不是所有的函数y=f(x)都能画出来,简单地找到最小值,此时就需要使用导数求最小值。

2.2 求导法——求最小值

  • 通过回归导数求极值的方法,我们知道大致步骤如下:
    • 第一步:求函数的导数
    • 第二步:令导数等于零
    • 第三步:解方程,求出疑似极值点
    • 第四步:验证该点是否是极值点以及是什么极值点

2.3 求导法存在的问题

  • 求导的方法是有一定前提条件的,即:
    • 第一步的求(偏)导数是可以求得的;
    • 第三步(偏)导数为零后,方程(组)是可以解的。
    • 实际工程中,上述方法是不可行的。以Llama3-8B模型为例,其有80亿个输入参数 x,按照上述的求解方法是几乎无法求得最小值的!
    • 由此可知,通过推导公式期望一次性求得最小值是不现实的;而我们可以借鉴人工智能中一个重要的思想:迭代法来逐步求解最小值。

2.4 迭代法——求最小值

  • 原理如下图:
    在这里插入图片描述
  • 随机选择一个出生点 x 0 : 随机选择一个出生点x_0: 随机选择一个出生点x0
    • 当 x 0 在最小值的左侧时: x 0 + 正数(一个非常小的正数),向右侧移动,而最小值左侧的导数是负数,所以可以看作 x 0 − 导数 当x_0在最小值的左侧时:x_0 + 正数(一个非常小的正数),向右侧移动,而最小值左侧的导数是负数,所以可以看作 x_0 - 导数 x0在最小值的左侧时:x0+正数(一个非常小的正数),向右侧移动,而最小值左侧的导数是负数,所以可以看作x0导数
    • 当 x 0 在最小值的右侧时: x 0 − 正数(一个非常小的正数),向左侧移动,而最小值右侧的导数是正数,所以也可以看作 x 0 − 导数 当x_0在最小值的右侧时:x_0 - 正数(一个非常小的正数),向左侧移动,而最小值右侧的导数是正数,所以也可以看作 x_0 - 导数 x0在最小值的右侧时:x0正数(一个非常小的正数),向左侧移动,而最小值右侧的导数是正数,所以也可以看作x0导数
    • 当 x 0 是最小值时: x 0 不需要移动,而此处的导数也正是 0 ,所以依然可以看作 x 0 − 导数 当x_0是最小值时:x_0不需要移动,而此处的导数也正是0,所以依然可以看作 x_0 - 导数 x0是最小值时:x0不需要移动,而此处的导数也正是0,所以依然可以看作x0导数
  • 梯度下降的概念
    • 在一元函数中,求函数f(x)在某一点的斜率为导数;在多元函数中,称为偏导数,也就是梯度。
    • 减去导数也就是减去梯度,这就是梯度下降法!

3. 代码实现

3.1 手动求函数最小值

  • y = 2 x 2 y= 2x^2 y=2x2
import numpy as np

def fn(x):
    """
    原始函数
    """
    return 2 * x ** 2

def dfn(x):
    """
    导函数
    """
    return 4 * x

def gradient_descent(x0, learning_rate, dfn, epochs):
    """
    使用梯度下降法求函数的最小值

    Parameters:
        x0 (float): 初始点的位置
        learning_rate (float): 学习率
        dfn (function): 导函数
        epochs (int): 迭代次数

    Returns:
        x_min (float): 最小值点的位置
    """
    for _ in range(epochs):
        x0 = x0 - learning_rate * dfn(x0)
    
    return x0

# 随机选择一个出生点
x0 = np.random.randint(low=-1000, high=1000, size=1)

# 迭代次数
epochs = 1000

# 学习率
learning_rate = 1e-2

# 使用梯度下降法求最小值
x_min = gradient_descent(x0, learning_rate, dfn, epochs)

# 输出最小值
print("最小值点的位置:", x_min)
  • f ( x , y , z ) = x 2 + y 2 + z 2 f ( x , y , z ) = x^2 + y^2 + z^2 f(x,y,z)=x2+y2+z2
import numpy as np

def df_x(x, y, z):
    """
    f 对 x 求偏导
    """
    return 2 * x

def df_y(x, y, z):
    """
    f 对 y 求偏导
    """
    return 2 * y

def df_z(x, y, z):
    """
    f 对 z 求偏导
    """
    return 2 * z

# 随机选择出生点
x0 = np.random.randint(low=-1000, high=1000, size=(1,))
y0 = np.random.randint(low=-1000, high=1000, size=(1,))
z0 = np.random.randint(low=-1000, high=1000, size=(1,))

# 迭代次数
epochs = 1000

# 学习率
learning_rate = 1e-2

for _ in range(epochs):
    # 求解每个变量的偏导
    fx = df_x(x0, y0, z0)
    fy = df_y(x0, y0, z0)
    fz = df_z(x0, y0, z0)
    
    # 每个变量都减去自己的偏导
    x0 = x0 - learning_rate * fx
    y0 = y0 - learning_rate * fy
    z0 = z0 - learning_rate * fz

# 输出更新后的变量值
print("更新后的 x 值:", x0)
print("更新后的 y 值:", y0)
print("更新后的 z 值:", z0)

3.2 使用pytorch求函数最小值

  • y = 2 x 2 y= 2x^2 y=2x2
import torch

# 定义原始函数和导函数
def fn(x):
    return 2 * x ** 2

# 说明:pytorch可以通过grad函数求导,所以可以省去写导函数
# def dfn(x):
#     return 4 * x

# 随机选择出生点
# requires_grad=True用来告诉框架该变量是一个张量,需要计算梯度。
x0 = torch.randint(low=-1000, high=1001, size=(1,), 
                   dtype=torch.float32, 
                   requires_grad=True)

# 迭代次数
epochs = 1000

# 学习率
learning_rate = 1e-2

# 使用 PyTorch 进行梯度下降
for _ in range(epochs):
    # 正向传播计算损失
    loss = fn(x0)
    
    # 反向传播计算梯度
    loss.backward()
    
    # 获取梯度并更新参数
    with torch.no_grad():
        grad = x0.grad
        x0 -= learning_rate * grad
    
    # 梯度清零
    x0.grad.zero_()

# 输出最小值点的位置
print("最小值点的位置:", x0.item())

  • f ( x , y , z ) = x 2 + y 2 + z 2 f ( x , y , z ) = x^2 + y^2 + z^2 f(x,y,z)=x2+y2+z2 为例
import torch

def fn(x, y, z):
    """
        函数定义
    """
    return x**2 + y**2 + z**2


# 说明:pytorch可以通过grad函数求导,所以可以省去写导函数
# def df_x(x, y, z):
#     return 2 * x

# def df_y(x, y, z):
#     return 2 * y

# def df_z(x, y, z):
#     return 2 * z

# 随机选择出生点
x0 = torch.randint(low=-1000, high=1001, size=(1,), 
                   dtype=torch.float32, 
                   requires_grad=True)
y0 = torch.randint(low=-1000, high=1001, size=(1,), 
                   dtype=torch.float32, 
                   requires_grad=True)
z0 = torch.randint(low=-1000, high=1001, size=(1,), 
                   dtype=torch.float32, 
                   requires_grad=True)

# 迭代次数
epochs = 1000

# 学习率
learning_rate = 1e-2

# 使用 PyTorch 进行梯度下降
for _ in range(epochs):
    # 正向传播计算损失
    loss = fn(x0, y0, z0)
    
    # 反向传播计算梯度
    loss.backward()
    
    # 获取梯度并更新参数
    # 在测试阶段或者不需要计算梯度的情况下使用 torch.no_grad()
    # 以提高计算效率并避免不必要的梯度计算。
    with torch.no_grad():
        x0 -= learning_rate * x0.grad
        y0 -= learning_rate * y0.grad
        z0 -= learning_rate * z0.grad
    
    # 梯度清零
    x0.grad.zero_()
    y0.grad.zero_()
    z0.grad.zero_()

# 输出更新后的变量值
print("更新后的 x 值:", x0.item())
print("更新后的 y 值:", y0.item())
print("更新后的 z 值:", z0.item())


  • 15
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MechMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值