多项式(?)

文章探讨了如何处理涉及二次函数和多项式的算法问题,包括2019CCPC女生赛C题的解决方案,利用优先队列优化分配策略,以及不同方法求解通过三个点的二次函数并预测第四点的坐标,如高斯消元法和拉格朗日插值法。
摘要由CSDN通过智能技术生成

(未更新完,见一道往文章里添一道)一些算法基本不相同但是都是多项式的一些问题(二次函数或者多项式),不知道怎么归类就先把他们都塞到这篇文章里面吧

A Function

题目来源于2019CCPC女生赛的C题,感觉是很不错的一个题

输入

输入有多行,第一行两个正整数n , m如题意描述

下面有n行每行有三个整数a,b,c分别代表二次函数的二次项,一次项,常数项系数

输出

输出只有一行答案

Sample Input

Sample Output

数据范围

1<=n <= m <=1e5

1 <= a <= 1000

-1000 <= b,c <=1000

(搬运一个很好的思路+代码,本人暂时写不出比这个更好的代码就直接搬运了)

原链接:

https://blog.csdn.net/bjfu170203101/article/details/103329587?app_version=5.11.1&code=app_1562916241&csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22103329587%22%2C%22source%22%3A%22m0_62592071%22%7D&uLinkId=usr1mkqgl919blen&utm_source=app

思路:由于a大于0,所有二次函数均是开口向上,而且x必须正整数。所以很自然想到先全部分配1.

然后逐个分配,由于二次函数f[i]-f[i-1]左边一定比右边更优,即i越小结果越小。

所以我们可以直接把F[I]-F[I-1]丢到优先队列里。每次让某一个二次函数的x+1,根据前面的分析,一定是队列首的二次函数加1 更优,因为队列里的所有数,将来只可能更大,不会变小。

然后把F[I+1]-F[I]丢回去即可。

(m-n的原因是因为x为正整数,每个数至少要取1,然后剩下的就用优先队列存储就好,说实话我确实是不太会写优先队列套struct,此题也当学习这种写法了)

B 二次函数

题目来源于百❀2022新生赛K

题目描述:

给三个点的横纵坐标,确定唯一的二次函数表达式,给第四个点的横坐标求对应的纵坐标

数据范围:

输入

共四行,第一行x1 y1,第二行x2 y2,第三行x3 y3,第四行x4

输出

输出y4(保证输出的一定是整数)

Sample Input

Sample Output

(补题抄题解,教练两行泪?思路和算法大概都懂了但是并不是很会写,就先当板子存着?)

C Complete the Sequence

懒得把题再抄一次了,就在差分那篇(其实和拉格朗日插值法有点关系)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值