数值计算铝制波纹瓦问题

文章通过两种数学方法——牛顿莱布尼兹公式和机械求积公式,解决了一道关于用铝板制作波纹瓦的问题。通过对函数sin(x)在特定区间积分,计算出4尺长波纹瓦所需的铝板长度约为48.5379寸。随着细分区间的增加,计算结果的精度提高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由一块平整的铝板压制而成.
若每个波纹的高度(自中心线)
为1寸, 周长为 2Π寸, 做4尺长波纹瓦需多长铝板?

思路一,用牛顿莱布尼兹公式求解:

其实本题就是根据函数 f(x) = sin(x),x的取值范围为(0,40),求解函数图像在该范围内的周长。

将区间 (0,40)分成若干个小区间,然后分别对小区间进行求解,并将结果累加起来,即:

可以将区间继续细分成更多块,(在此处分为了320块)利用牛顿莱布尼兹公式求解的结果为48.5379.

法二:用机械求积公式求解

将区间分割成若干小区间累加求和

下面是使用机械求积公式计算函数 f(x) = sin(x) 在区间(0,40)上的弧长方法:

根据机械求积公式,可以用若干个等距离的小线段的长度之和来近似表示曲线弧长。因此,可以将区间(0,40)等分成 N 个小区间,每个小区间的长度为 dx,则有:

可以近似化为F(x) ≈ ∑[k=1,N]sqrt(1+cos^2(x_k))*dx

其中,x_k 表示小区间的左端点,dx = (40-0)/N 表示小区间的长度。

当 N 越大时,计算得到的近似值越接近真实值。

采用N=10000,求解的值为48.5378

通过matlab求解如下:

综上而言:牛顿莱布尼兹公式精度较高,

而机械求积公式的计算量较小。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值