由一块平整的铝板压制而成.
若每个波纹的高度(自中心线)
为1寸, 周长为 2Π寸, 做4尺长波纹瓦需多长铝板?
思路一,用牛顿莱布尼兹公式求解:
其实本题就是根据函数 f(x) = sin(x),x的取值范围为(0,40),求解函数图像在该范围内的周长。
将区间 (0,40)分成若干个小区间,然后分别对小区间进行求解,并将结果累加起来,即:
可以将区间继续细分成更多块,(在此处分为了320块)利用牛顿莱布尼兹公式求解的结果为48.5379.
法二:用机械求积公式求解
将区间分割成若干小区间累加求和
下面是使用机械求积公式计算函数 f(x) = sin(x) 在区间(0,40)上的弧长方法:
根据机械求积公式,可以用若干个等距离的小线段的长度之和来近似表示曲线弧长。因此,可以将区间(0,40)等分成 N 个小区间,每个小区间的长度为 dx,则有:
可以近似化为F(x) ≈ ∑[k=1,N]sqrt(1+cos^2(x_k))*dx
其中,x_k 表示小区间的左端点,dx = (40-0)/N 表示小区间的长度。
当 N 越大时,计算得到的近似值越接近真实值。
采用N=10000,求解的值为48.5378
通过matlab求解如下:
综上而言:牛顿莱布尼兹公式精度较高,
而机械求积公式的计算量较小。