思路:
首先计算前缀和数组s[]:s[i]=s[i-1]+a[i]
我们考虑到区间[l,r]中所有数字的和可以用s[r] - s[l-1]表示,因为:
s[r] = a[1] + a[2] + a[3] + a[l-1] + a[l] + a[l+1] ...... +a[r];
s[l-1] = a[1] + a[2] + a[3] +......+ a[l-1];
二者相减,s[r] - s[l-1] = a[l] + a[l+1]+......+ a[r],即为区间中所有数字的和。
这样,对于每个询问,只需要执行 s[r]-s[l-1]。输出原序列中从第l个数到第r个数的和的时间复杂度变成了O(1)。
我们把它叫做一维前缀和。
总结:
#include<iostream>
using namespace std;
const int N=100010;
int a[N],s[N];
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) {
scanf("%d",&a[i]);
s[i]=s[i-1]+a[i];//计算前缀和
}
while(m--){
int l,r;
scanf("%d%d",&l,&r);
printf("%d\n",s[r]-s[l-1]);//计算特定区间和
}
return 0;
}