一、研究背景
欧洲经济长期以来是全球经济体系中的重要组成部分。无论是在全球金融危机后的复苏过程中,还是在新冠疫情期间,欧洲经济的表现都对世界经济产生了深远的影响。欧洲各国经济体之间既存在相似性,也存在显著的差异。这些差异不仅体现在宏观经济指标上,如GDP增长率、通货膨胀率、失业率等,还体现在政府预算、债务与GDP比例、经常账户余额等财务指标上。因此,通过聚类分析和主成分分析(PCA)来研究欧洲各国经济指标的相似性和差异性,对于深入理解欧洲经济体系内部的动态和结构具有重要意义。
近年来,全球化进程加速以及欧盟内部一体化的推进,使得欧洲各国经济之间的联系日益紧密。然而,各国在经济政策、产业结构、资源分配等方面仍然存在显著差异。通过聚类分析,可以将具有相似经济特征的国家归为一类,揭示出这些国家在经济发展中的共同模式。而主成分分析则能够简化数据结构,提取出影响欧洲经济的主要因素,帮助我们更好地理解复杂的经济现象。
二、研究意义
-
揭示经济模式:通过聚类分析可以识别出欧洲国家在经济发展中的不同模式,帮助政策制定者了解不同经济体的特征,从而制定更有针对性的经济政策。
-
简化数据分析:主成分分析能够降低数据的维度,将多个经济指标简化为少数几个主要成分,这有助于更直观地理解影响欧洲经济的关键因素,便于进行进一步的经济分析和预测。
-
支持决策制定:本研究的结果可以为政府和企业提供参考依据,帮助他们在经济规划、投资决策和风险管理方面做出更明智的选择。例如,通过了解哪些国家具有相似的经济特征,可以在区域合作、市场开发等方面做出更有战略性的布局。
-
学术贡献:本研究将丰富聚类分析和主成分分析在经济研究领域的应用案例,提供一种新的视角来审视欧洲经济,有助于推动相关学术研究的发展。
三、实证分析
读取数据
import numpy as np
import pandas as pd
import os
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
import warnings
warnings.filterwarnings('ignore')
df=pd.read_csv('Economy_Indicators.csv')
df.head()
查看数据类型
数据预处理