Python数据分析-航空公司客户满意度分析

一、研究背景

随着航空业的快速发展,航空公司之间的竞争愈发激烈。航空公司不再仅仅依靠价格、航班时间等基本要素来吸引客户,而更多地关注如何提升客户体验与满意度。乘客的飞行体验和满意度不仅影响了他们的忠诚度,也对航空公司在市场中的竞争力产生了直接影响。近年来,越来越多的航空公司开始通过收集和分析乘客反馈,改进服务流程,优化航班运营,以提升客户的整体满意度。
客户满意度的研究主要集中在多个维度,如机上服务、座位舒适度、航班延误等。这些因素共同决定了乘客对航空公司服务的感知与评价。尤其是在当今全球化竞争日益加剧的背景下,了解哪些服务维度对乘客的满意度影响最大,可以帮助航空公司更好地制定服务策略,提升市场份额。

二、研究意义

本研究的意义主要体现在以下几个方面:

  1. 提升客户忠诚度:通过对乘客满意度的深入分析,航空公司能够更好地了解影响客户忠诚度的关键因素。例如,通过分析忠诚客户和不忠诚客户之间的差异,可以为公司提供定向改善服务的指导,从而提高客户留存率。

  2. 改善客户体验:本研究识别了哪些因素最能影响乘客的满意与否。通过对这些因素的优化,航空公司可以在客户服务中做出更具针对性的调整。例如,改善机上娱乐、座位舒适度或登机服务质量等都能显著提高客户的满意度。

  3. 优化资源配置:通过了解客户对不同服务的满意度,航空公司可以更科学地分配资源,集中提升最具影响力的服务项目。比如,发现乘客对航班延误和机上服务特别敏感,航空公司可以相应地投入更多资源来优化这些方面。

  4. 数据驱动的决策:本研究为航空公司提供了基于数据的决策依据,使其能够通过数据分析识别出最优的服务改进方案,而不是依靠传统的主观经验或反馈。数据驱动的服务提升能够让航空公司在市场中保持竞争力。

三、实证分析

数据和代码

完整报告代码加数据

此数据集包含航空公司乘客满意度调查。哪些因素与满意(或不满意)的乘客高度相关?

数据集内容
性:乘客性别(女性、男性)
客户类型:客户类型 (忠诚客户、不忠诚客户)
年龄:乘客的实际年龄
旅行类型:乘客的飞行目的(个人旅行、商务旅行)
类:乘客飞机上的旅行舱位(商务舱、Eco、Eco Plus)
飞行距离:此旅程的飞行距离
机上 wifi 服务:机上 wifi 服务的满意度 (0:不适用;1-5)
出发/到达时间方便:满意程度 出发 / 到达 时间 方便
在线预订的便利性:在线预订的满意度
登机口位置:登机口位置的满意度
食物和饮料:食品和饮料的满意度
网上登机:网上登机满意度
座椅舒适度:座椅舒适度满意度
机上娱乐:机上娱乐满意度
机上服务:On-board 服务的满意度
腿部客房服务:Leg room 服务的满意度
行李处理:行李处理满意度
值机服务:值机服务的满意度
机上服务:机上服务满意度
清洁:清洁度满意度
出发延误(分钟):出发时延误的分钟数
到达延迟(分钟):到达时延迟的分钟数
满意:航空公司满意度(满意、中立或不满意)
首先导入数据集分析的包

import pandas as pd
import numpy as np 
import seaborn as sns 
import matplotlib.pyplot as plt
import warnings
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, classification_report ,confusion_matrix , precision_score, recall_score, f1_score, classification_report

from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from xgboost import XGBClassifier
from sklearn.ensemble import BaggingClassifier
df= pd.read_csv(r"test.csv" )

df.T

数据预处理

df.set_index("Unnamed: 0" , inplace=True)
df.drop('id', axis=1, inplace=True)

print(df.shape)
print("The number of rows : " , df.shape[0])
print("The number of columns : " , df.shape[1])

再查看数据信息

爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值