Python数据分析-植物生长数据分析(机器学习模型和神经网络模型)

一、研究背景

植物生长受多种环境因素的影响,包括土壤类型、日照时间、浇水频率、肥料类型、温度和湿度等。这些因素不仅影响植物的生长速度和健康状况,还对植物在不同生长阶段的表现有显著影响。随着气候变化和环境污染问题的加剧,研究如何优化植物生长条件以提高农作物产量和质量变得尤为重要。本研究旨在通过分析不同环境变量对植物生长里程碑的影响,找出最佳的种植条件,为农民和园艺师提供科学依据,帮助他们在不同环境下进行有效的种植管理。

二、研究意义

  • 提高农作物产量和质量:通过了解不同环境因素对植物生长的影响,可以优化种植条件,从而提高农作物的产量和质量。
  • 促进可持续农业发展:通过科学的种植管理,减少对化学肥料和过量水资源的依赖,推动农业的可持续发展。
  • 应对气候变化挑战:为应对气候变化带来的农业挑战提供数据支持,帮助制定应对极端天气和环境变化的种植策略。
  • 增强农民和园艺师的决策能力:提供具体的种植指导,帮助农民和园艺师在实际生产中做出更明智的决策,提高生产效率和经济效益。

三、实证分析

该数据集包含Growth_Milestone(目标)和一些影响它的因素 这个问题考虑为二元分类 第 1 部分: 包含对数据的一些分析,除了准备和清理数据之外的DataExplantory 第2部分: 我将使用一些传统的机器学习技术:

目标:根据提供的环境和管理因素对植物的生长里程碑进行预测和分类。 我们的目标:预测植物的生长阶段或里程碑。 特征: Soil_Type:植物生长的土壤类型或成分。 Sunlight_Hours:植物接受阳光照射的持续时间或强度。 Water_Frequency:植物浇水的频率,表示浇水时间表。 Fertilizer_Type:用于滋养植物的肥料类型。 Temperature::植物生长的环境温度条件。 Humidity:植物周围环境中的水分或湿度水平。 Growth_Milestone:指示植物生长过程中的阶段或重要事件的描述或标记。

数据和完整代码

完整报告代码加数据

导入包:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['KaiTi']  #中文
plt.rcParams['axes.unicode_minus'] = False   #负号
import IPython.display
from sklearn.preprocessing import LabelEncoder,StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.base import BaseEstimator , TransformerMixin
from sklearn.feature_selection import VarianceThreshold ,f_classif ,SelectKBest
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
from sklearn import tree
from sklearn.metrics import classification_report,confusion_matrix ,ConfusionMatrixDisplay
from sklearn import svm
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB

读取数据和查看其基本信息:

data=pd.read_csv("data.csv")
data.head(5)

 

获取其他信息

随后进行描述性统计分析

data.describe().T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值