CIFAR-10数据集共有60000张尺寸为3 × 32 × 32的图像,训练集图像50000张,测试集图像10000张。数据集大小约为100M,总共可以对里面的图像分成10类,本文将利用卷积神经网络对该数据集进行图像识别分类。
1.下载数据集
使用Pytorch提供的视觉工具包torchvision加载CIFAR-10数据集,第一次运行程序torchvision会自动下载CIFAR-10数据集, 数据集大小约为100M,需花费一些时间,如果已经下载好CIFAR-10数据集,那么可通过root参数指定。如下是该案例导入的包:
import torch as t
import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
2.数据预处理
# 可以把Tensor转成Image,用于 实现张量(Tensor)与 PIL 图像(PIL.Image)之间的格式转换
show = ToPILImage()
transform = transforms.Compose([
transforms.ToTensor(), # 转为Tensor
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化
])
# 训练集
trainset = tv.datasets.CIFAR10(
root='./pytorch-book-cifar10/',
train=True,
download=True,
transform=transform)
"""`Dataloader`是一个可迭代对象,它将`Dataset`返回的每一条数据样本拼接成一个batch,
数据集 以batch_size个样本为一个批次地加载训练数据。
同时提供多线程加速优化和数据打乱等操作。当程序对`Dataset`的所有数据遍历完一遍后,
对`Dataloader`也完成了一次迭代
"""
trainloader = t.utils.data.DataLoader(
trainset,
batch_size=4,
shuffle=True,
num_workers=2)
# 测试集
testset = tv.datasets.CIFAR10(
'./pytorch-book-cifar10/',
train=False,
download=True,
transform=transform)
testloader = t.utils.data.DataLoader(
testset,
batch_size=4,
shuffle=False,
num_workers=2
)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
(data, label) = trainset[100]
#查看数据
print(classes[label])
# (data + 1) / 2目的是:还原被归一化的数据
show((data + 1) / 2).resize((100, 100))
dataiter = iter(trainloader) # 生成迭代器
images, labels = dataiter.__next__() # 返回4张图片及标签
print(' '.join('%11s' % classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid((images + 1) / 2)).resize((400, 100))
# 显示图像
plt.imshow(show(tv.utils.make_grid((images + 1) / 2)).resize((400, 100)))
plt.axis('off')
plt.show()
3.定义网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 卷积层
# 参数说明:
# in_channels=3 : 输入通道数(RGB图像为3通道)
# out_channels=6 : 输出通道数(卷积核数量)
# kernel_size=5 : 卷积核尺寸5x5
# 输入假设为[32x32]图像时输出尺寸为28x28(计算公式:(32-5+0)/1 +1)
self.conv1 = nn.Conv2d(3, 6, 5) # [3,32,32] → [6,28,28]
# 池化层(全局共用) 参数说明:
# kernel_size=2 : 池化窗口尺寸2x2
# stride=2 : 滑动步长为2(输出尺寸减半)
self.pool = nn.MaxPool2d(2, 2) # [6,28,28] → [6,14,14]
# 第二个卷积层
# 输入通道6来自conv1的输出,输出通道16
# 池化后输入尺寸14x14 → 卷积输出10x10 → 再次池化后5x5
self.conv2 = nn.Conv2d(6, 16, 5) # [6,14,14] → [16,10,10]
# → 池化后 [16,5,5]
# 全连接层
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 输入维度修正为16*5*5=400
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) # 假设输出10类
def forward(self, x): # 定义前向传播流程
# 卷积层处理:卷积 → ReLU激活 → 池化
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
# 全连接层处理:展平 → ReLU激活 → ReLU激活 → 全连接层
x = x.view(-1, 16 * 5 * 5) # 展平操作,参数-1表示自动计算batch_size维度
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
4.训练模型
#定义损失函数和优化器
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
#训练网络,轮次可以自定义
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 输入数据
inputs, labels = data
# 梯度清零
optimizer.zero_grad()
# forward + backward
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
# 更新参数
optimizer.step()
# 打印log信息
running_loss += loss.item()
if i % 2000 == 1999: # 每2000个batch打印一下训练状态
print('[%d, %5d] loss: %.3f' \
% (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
5.在测试集上评估
#将测试图片输入到网络中,计算它的label,然后与实际的label进行比较
dataiter = iter(testloader)
images, labels = dataiter.__next__() # 一个batch返回4张图片
print('实际的label: ', ' '.join(\
'%08s'%classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid(images / 2 - 0.5)).resize((400, 100))
#计算网络预测的分类结果
# 计算图片在每个类别上的分数
outputs = net(images)
# 得分最高的那个类
_, predicted = t.max(outputs.data, 1)
print('预测结果: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
correct = 0 # 预测正确的图片数
total = 0 # 总共的图片数
#在整个测试集上的效果
# 由于测试的时候不需要求导,可以暂时关闭autograd,提高速度,节约内存
with t.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = t.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('10000张测试集中的准确率为: %f %%' % (100 * correct // total))
6.一键粘贴运行代码。
import torch as t
import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
# 可以把Tensor转成Image,Jupyter可直接显示Image对象
show = ToPILImage()
# 第一次运行程序torchvision会自动下载CIFAR-10数据集,
# 数据集大小约为100M,需花费一些时间,
# 如果已经下载好CIFAR-10数据集,那么可通过root参数指定
# 定义对数据的预处理
transform = transforms.Compose([
transforms.ToTensor(), # 转为Tensor
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化
])
# 训练集
trainset = tv.datasets.CIFAR10(
root='./pytorch-book-cifar10/',
train=True,
download=True,
transform=transform)
trainloader = t.utils.data.DataLoader(
trainset,
batch_size=4,
shuffle=True,
num_workers=2)
#`Dataloader`是一个可迭代对象,它将`Dataset`返回的每一条数据样本拼接成一个batch,
# 数据集 以batch_size个样本为一个批次地加载训练数据。
# 同时提供多线程加速优化和数据打乱等操作。当程序对`Dataset`的所有数据遍历完一遍后,
# 对`Dataloader`也完成了一次迭代
# 测试集
testset = tv.datasets.CIFAR10(
'./pytorch-book-cifar10/',
train=False,
download=True,
transform=transform)
testloader = t.utils.data.DataLoader(
testset,
batch_size=4,
shuffle=False,
num_workers=2
)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
(data, label) = trainset[100]
print(classes[label])
# (data + 1) / 2目的是:还原被归一化的数据
show((data + 1) / 2).resize((100, 100))
dataiter = iter(trainloader) # 生成迭代器
images, labels = dataiter.__next__() # 返回4张图片及标签
print(' '.join('%11s' % classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid((images + 1) / 2)).resize((400, 100))
# 显示图像
plt.imshow(show(tv.utils.make_grid((images + 1) / 2)).resize((400, 100)))
plt.axis('off')
plt.show()
#定义网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 卷积层
# 参数说明:
# in_channels=3 : 输入通道数(RGB图像为3通道)
# out_channels=6 : 输出通道数(卷积核数量)
# kernel_size=5 : 卷积核尺寸5x5
# 输入假设为[32x32]图像时输出尺寸为28x28(计算公式:(32-5+0)/1 +1)
self.conv1 = nn.Conv2d(3, 6, 5) # [3,32,32] → [6,28,28]
# 池化层(全局共用) 参数说明:
# kernel_size=2 : 池化窗口尺寸2x2
# stride=2 : 滑动步长为2(输出尺寸减半)
self.pool = nn.MaxPool2d(2, 2) # [6,28,28] → [6,14,14]
# 第二个卷积层
# 输入通道6来自conv1的输出,输出通道16
# 池化后输入尺寸14x14 → 卷积输出10x10 → 再次池化后5x5
self.conv2 = nn.Conv2d(6, 16, 5) # [6,14,14] → [16,10,10]
# → 池化后 [16,5,5]
# 全连接层
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 输入维度修正为16*5*5=400
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) # 假设输出10类
def forward(self, x): # 定义前向传播流程
# 卷积层处理:卷积 → ReLU激活 → 池化
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
# 全连接层处理:展平 → ReLU激活 → ReLU激活 → 全连接层
x = x.view(-1, 16 * 5 * 5) # 展平操作,参数-1表示自动计算batch_size维度
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
print(net)
#定义损失函数和优化器
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
#训练网络,10论时间太长可以改小点
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 输入数据
inputs, labels = data
# 梯度清零
optimizer.zero_grad()
# forward + backward
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
# 更新参数
optimizer.step()
# 打印log信息
running_loss += loss.item()
if i % 2000 == 1999: # 每2000个batch打印一下训练状态
print('[%d, %5d] loss: %.3f' \
% (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
#将测试图片输入到网络中,计算它的label,然后与实际的label进行比较
dataiter = iter(testloader)
images, labels = dataiter.__next__() # 一个batch返回4张图片
print('实际的label: ', ' '.join(\
'%08s'%classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid(images / 2 - 0.5)).resize((400, 100))
#计算网络预测的分类结果
# 计算图片在每个类别上的分数
outputs = net(images)
# 得分最高的那个类
_, predicted = t.max(outputs.data, 1)
print('预测结果: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
correct = 0 # 预测正确的图片数
total = 0 # 总共的图片数
#在整个测试集上的效果
# 由于测试的时候不需要求导,可以暂时关闭autograd,提高速度,节约内存
with t.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = t.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('10000张测试集中的准确率为: %f %%' % (100 * correct // total))