人体姿态估计——Python+OpenCV+OpenPose

前言

人体姿态估计(Human Pose estimation),几十年来备受计算机视觉界关注,其实在计算机视觉中是一个是很基础的问题,其实通俗化理解就是对“人体”的姿态(部分关键点:头,手,脚等具有象征性的关键部位)的位置估计。姿态估计可以应用在很多领域,比如说可以实现类似于格灵深瞳的各种游戏应用,当然,我们可以利用人体姿态估计,去完成某些生活需要!在这里插入图片描述

技术难点

基于关键点的人体姿态识别可分为两个方面,即静态的人体姿态识别与动态的人体姿态识别,总的来说,人体关键点姿态识别技术主要面临的几方面技术难点如下:

(1) 姿态位移尺度变换
不同相机角度下捕获到的姿态关键点的空间位置、视角方向各不相同
(2) 姿态大小尺度变换
不同行为个体的差异造成相同人体姿态的尺寸大小、表观形状不完全相同。
(3) 关键点噪声与关键点缺失
人体姿态检测的造成的人体骨骼关键点丢失,或者关键点漂移等。
(4) 人体姿态表达的视频区域分割
对运动人体姿态语义视频的有效分割。比如,喝水动作,需要分割出人体从拿起水杯喝水,到喝完水放下水杯的过程。

人体姿态估计方法类别

虽然人体姿态估计是计算机视觉中一个很基础的问题,但是这个问题目前还是可以再具体化地分为4个不同的方面:单人姿态估计(Single-Person Skeleton Estimation)、多人姿态估计 (Multi-person Pose Estimation)、人体姿态跟踪(Video Pose Tracking)、3D人体姿态估计(3D Skeleton Estimation)。接下来就是对这四个方面的问题进行简略的说明。
在这里插入图片描述(人体姿态估计其实就是将各个关键点两两连接组成有效肢体)

单人姿态估计

单人姿态估计是最早的一种人体姿态估计方法,意思当然就是只是针对图像或场景中只有一个人的情景,只估计单个人的姿态,目前来说,单人姿态估计已经不适用了,因为在现实生活中,一个人的情景少之又少,往往一个图像中会存在很多个人,如果应用单人姿态估计的话,就会存在很多的误差。对于解决单人姿态估计和下面的多人姿态估计问题时,一般有两种做法,分别是top-down和bottom-up的方法:top-down的方法,就可以简单理解为“从大到小”,先找到图片中行人,然后对每个行人做姿态估计,寻找每个人的关键点。单人姿态估计一般是使用top-down的方法来进行估计;bottom-up的方法,运行思路恰恰与top-down相反,它先是找图片中所有关键点(parts),比如所有头部,手,脚,膝盖等。然后把这些关键点相连组装成一个个行人。在这里插入图片描述
(top-down和down-top运行原理)

多人姿态估计

多人姿态估计其实就是在单人姿态估计算法的基础上,进一步优化,从而能够做到对一张图上的多个人体姿态进行估计,估计方法就不再多言了,在上面的单人姿态估计中已经简略地介绍了方法,主要就是运用down-top的方法来进行估计。

人体姿态跟踪

人体姿态跟踪主要是针对视频场景中的每一个行人(运动中的人物),进行人体以及每个关键点的跟踪。这个问题本身其实难度是很大的。相比行人跟踪来讲,人体关键点在视频中的temporal motion可能比较大,比如一个行走的行人,手跟脚会不停的摆动,所以跟踪难度会比跟踪人体框大。目前主要有的数据集是PoseTrack。

3D人体姿态估计

3D人体姿态估计,就是通过输入人体RGB图像,输出3D的人体关键点。从而使人体姿态估计更加完善,如下图:在这里插入图片描述

技术原理

需要运用到OpenPose,OpenPose人体姿态识别项目是美国卡耐基梅隆大学(CMU)基于卷积神经网络和监督学习并以Caffe为框架开发的开源库。可以实现人体动作、面部表情、手指运动等姿态估计。适用于单人和多人,具有极好的鲁棒性。是世界上首个基于深度学习的实时多人二维姿态估计应用,基于它的实例如雨后春笋般涌现。
输入一幅图像,经过卷积网络提取特征,得到一组特征图,然后分成两个岔路,分别使用 CNN网络提取Part Confidence Maps 和 Part Affinity Fields;
在这里插入图片描述

得到这两个信息后,我们使用图论中的 Bipartite Matching(偶匹配) 求出Part Association,将同一个人的关节点连接起来,由于PAF自身的矢量性,使得生成的偶匹配很正确,最终合并为一个人的整体骨架;
最后基于PAFs求Multi-Person Parsing—>把Multi-person parsing问题转换成graphs问题—>Hungarian Algorithm(匈牙利算法)
(匈牙利算法是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。)

神经网络的实现

在这里插入图片描述

阶段一:VGGNet的前10层用于为输入图像创建特征映射。
在这里插入图片描述

阶段二:使用2分支多阶段CNN,其中第一分支预测身体部位位置(例如肘部,膝部等)的一组2D置信度图(S)。 如下图所示,给出关键点的置信度图和亲和力图 - 左肩。

在这里插入图片描述

第二分支预测一组部分亲和度的2D矢量场(L),其编码部分之间的关联度。 如下图所示,显示颈部和左肩之间的部分亲和力。

阶段三: 通过贪心推理解析置信度和亲和力图,对图像中的所有人生成2D关键点。

相关代码

import argparse

import cv2
import numpy as np
import torch

from models.with_mobilenet import PoseEstimationWithMobileNet
from modules.keypoints import extract_keypoints, group_keypoints
from modules.load_state import load_state
from modules.pose import Pose, track_poses
from val import normalize, pad_width


class ImageReader(object):
    def __init__(self, file_names):
        self.file_names = file_names
        self.max_idx = len(file_names)

    def __iter__(self):
        self.idx = 0
        return self

    def __next__(self):
        if self.idx == self.max_idx:
            raise StopIteration
        img = cv2.imread(self.file_names[self.idx], cv2.IMREAD_COLOR)
        if img.size == 0:
            raise IOError('Image {} cannot be read'.format(self.file_names[self.idx]))
        self.idx = self.idx + 1
        return img


class VideoReader(object):
    def __init__(self, file_name):
        self.file_name = file_name
        try:  # OpenCV needs int to read from webcam
            self.file_name = int(file_name)
        except ValueError:
            pass

    def __iter__(self):
        self.cap = cv2.VideoCapture(self.file_name)
        if not self.cap.isOpened():
            raise IOError('Video {} cannot be opened'.format(self.file_name))
        return self

    def __next__(self):
        was_read, img = self.cap.read()
        if not was_read:
            raise StopIteration
        return img


def infer_fast(net, img, net_input_height_size, stride, upsample_ratio, cpu,
               pad_value=(0, 0, 0), img_mean=np.array([128, 128, 128], np.float32), img_scale=np.float32(1/256)):
    height, width, _ = img.shape
    scale = net_input_height_size / height

    scaled_img = cv2.resize(img, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
    scaled_img = normalize(scaled_img, img_mean, img_scale)
    min_dims = [net_input_height_size, max(scaled_img.shape[1], net_input_height_size)]
    padded_img, pad = pad_width(scaled_img, stride, pad_value, min_dims)

    tensor_img = torch.from_numpy(padded_img).permute(2, 0, 1).unsqueeze(0).float()
    if not cpu:
        tensor_img = tensor_img.cuda()

    stages_output = net(tensor_img)

    stage2_heatmaps = stages_output[-2]
    heatmaps = np.transpose(stage2_heatmaps.squeeze().cpu().data.numpy(), (1, 2, 0))
    heatmaps = cv2.resize(heatmaps, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC)

    stage2_pafs = stages_output[-1]
    pafs = np.transpose(stage2_pafs.squeeze().cpu().data.numpy(), (1, 2, 0))
    pafs = cv2.resize(pafs, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC)

    return heatmaps, pafs, scale, pad


def run_demo(net, image_provider, height_size, cpu, track, smooth):
    net = net.eval()
    if not cpu:
        net = net.cuda()

    stride = 8
    upsample_ratio = 4
    num_keypoints = Pose.num_kpts
    previous_poses = []
    delay = 1
    for img in image_provider:
        orig_img = img.copy()
        heatmaps, pafs, scale, pad = infer_fast(net, img, height_size, stride, upsample_ratio, cpu)

        total_keypoints_num = 0
        all_keypoints_by_type = []
        for kpt_idx in range(num_keypoints):  # 19th for bg
            total_keypoints_num += extract_keypoints(heatmaps[:, :, kpt_idx], all_keypoints_by_type, total_keypoints_num)

        pose_entries, all_keypoints = group_keypoints(all_keypoints_by_type, pafs)
        for kpt_id in range(all_keypoints.shape[0]):
            all_keypoints[kpt_id, 0] = (all_keypoints[kpt_id, 0] * stride / upsample_ratio - pad[1]) / scale
            all_keypoints[kpt_id, 1] = (all_keypoints[kpt_id, 1] * stride / upsample_ratio - pad[0]) / scale
        current_poses = []
        for n in range(len(pose_entries)):
            if len(pose_entries[n]) == 0:
                continue
            pose_keypoints = np.ones((num_keypoints, 2), dtype=np.int32) * -1
            for kpt_id in range(num_keypoints):
                if pose_entries[n][kpt_id] != -1.0:  # keypoint was found
                    pose_keypoints[kpt_id, 0] = int(all_keypoints[int(pose_entries[n][kpt_id]), 0])
                    pose_keypoints[kpt_id, 1] = int(all_keypoints[int(pose_entries[n][kpt_id]), 1])
            pose = Pose(pose_keypoints, pose_entries[n][18])
            current_poses.append(pose)

        if track:
            track_poses(previous_poses, current_poses, smooth=smooth)
            previous_poses = current_poses
        for pose in current_poses:
            pose.draw(img)
        img = cv2.addWeighted(orig_img, 0.6, img, 0.4, 0)
        for pose in current_poses:
            cv2.rectangle(img, (pose.bbox[0], pose.bbox[1]),
                          (pose.bbox[0] + pose.bbox[2], pose.bbox[1] + pose.bbox[3]), (0, 255, 0))
            if track:
                cv2.putText(img, 'id: {}'.format(pose.id), (pose.bbox[0], pose.bbox[1] - 16),
                            cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255))
        cv2.imshow('Lightweight Human Pose Estimation Python Demo', img)
        key = cv2.waitKey(delay)
        if key == 27:  # esc
            return
        elif key == 112:  # 'p'
            if delay == 1:
                delay = 0
            else:
                delay = 1


if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description='''Lightweight human pose estimation python demo.
                       This is just for quick results preview.
                       Please, consider c++ demo for the best performance.''')
    parser.add_argument('--checkpoint-path', type=str, required=True, help='path to the checkpoint')
    parser.add_argument('--height-size', type=int, default=256, help='network input layer height size')
    parser.add_argument('--video', type=str, default='', help='path to video file or camera id')
    parser.add_argument('--images', nargs='+', default='', help='path to input image(s)')
    parser.add_argument('--cpu', action='store_true', help='run network inference on cpu')
    parser.add_argument('--track', type=int, default=1, help='track pose id in video')
    parser.add_argument('--smooth', type=int, default=1, help='smooth pose keypoints')
    args = parser.parse_args()

    if args.video == '' and args.images == '':
        raise ValueError('Either --video or --image has to be provided')

    net = PoseEstimationWithMobileNet()
    checkpoint = torch.load(args.checkpoint_path, map_location='cpu')
    load_state(net, checkpoint)

    frame_provider = ImageReader(args.images)
    if args.video != '':
        frame_provider = VideoReader(args.video)
    else:
        args.track = 0

    run_demo(net, frame_provider, args.height_size, args.cpu, args.track, args.smooth)

参考文献

[1].Python+OpenCV+OpenPose实现人体姿态估计(人体关键点检测)_不脱发的程序猿-CSDN博客

运行过程

在这里插入图片描述
(gif较卡只能用jpg)
本项目实现代码及模型参见网址:https://github.com/Daniil-Osokin/lightweight-human-pose-estimation.pytorch

人体姿态估计代码运行

注意

首先需要阅读README.MD文件。里面有一个文件checkpoint_iter_370000.pth 要下载下来。这是训练好的模型文件。
运行demo.py时
例如,可能会提示No module named pycocotools,
在环境中pip install pycocotools 即可解决
依赖库安装成功后,会提示
The following arguments are required: --checkpoint-path
然后在菜单Run,edit configurations在parameters 一栏填–checkpoint-path=checkpoint_iter_370000.pth
在这里插入图片描述

如果提示要缺少 –video 或 –image
则在命令行参数里添加 --video=0,表示使用你的0号摄像头。
可能还会提示关于cuda的错误,增加一个命令行参数:–cpu,即可。(每个命令行参数都需要一个空格隔开)
在这里插入图片描述
(即形参)
类似代码:
https://github.com/edvardHua/PoseEstimationForMobile
https://github.com/tensorlayer/hyperpose
https://github.com/facebookresearch/VideoPose3D

  • 14
    点赞
  • 154
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
机器学习水果识别是一种利用机器学习算法和图像处理技术对水果进行自动识别的方法。其中,使用Python中的OpenCV库实现物体特征提取是一种常见的实现方式。 OpenCV是一个强大的开源计算机视觉库,提供了许多用于图像处理和分析的函数和工具。它可以辅助我们实现水果识别所需要的特征提取步骤。 首先,我们需要准备水果图像数据集。这些图像可以是不同种类的水果,每个水果都有多个不同视角的图像。接下来,我们使用OpenCV库中的函数加载和处理这些图像。 在特征提取中,我们可以使用很多不同的技术。其中,最常用的方法是使用图像的颜色和纹理特征。在处理图像时,我们可以使用OpenCV中的函数计算这些特征。 例如,我们可以使用OpenCV中的函数提取图像的颜色直方图。这可以帮助我们了解图像中不同颜色的比例和分布情况。在水果识别中,不同水果的颜色特征往往是不同的。 此外,我们还可以使用OpenCV中的纹理特征提取方法,比如局部二值模式(Local Binary Patterns)。这可以帮助我们分析图像中的纹理信息,如图像的细节和纹理变化。这些纹理特征在识别不同类型的水果时也是有用的。 最后,我们可以使用机器学习算法,如支持向量机(SVM)或卷积神经网络(CNN),来训练一个分类模型。这个模型可以根据提取的特征来判断输入图像是否为某种水果。 总之,使用Python中的OpenCV库实现水果识别中的物体特征提取是一种非常有效的方法。通过提取图像的颜色和纹理特征,并使用机器学习算法进行分类,我们可以实现一个准确和高效的水果识别系统。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值