RAG中文本和图片的对齐

目录

文本与图片的对齐流程概述

引言

基本概念

关键技术

1. 特征提取

文本特征提取示例

图片特征提取示例

2. 映射到共同嵌入空间

3. 对齐学习


文本与图片的对齐流程概述

引言

        文本图像对齐(Text-Image Alignment)是指将文本描述与相应的图像内容进行匹配和对齐的过程。这一技术在计算机视觉和自然语言处理领域具有广泛的应用,如图像检索、图像生成、多模态理解等。本文将详细介绍文本图像对齐的基本概念、关键技术、应用场景以及未来发展方向。

基本概念

        文本图像对齐的核心问题是建立文本描述与图像内容之间的对应关系。具体来说,给定一段文本描述和一张或多张图像,系统需要识别出哪些图像部分与文本中的特定词语或短语相对应。例如,如果文本描述为“一只黑色的猫坐在沙发上”,系统需要能够识别图像中哪些区域表示“黑色的猫”和“沙发”。

关键技术

1.我们需要先进行特征提取。

        文本无所谓,但是一个图片的大小是以M计算,所以我们首先要提取图片的特征;

2.映射到同一个嵌入空间

        将文本和图像特征映射到同一个嵌入空间是为了使它们能够在同一个空间中进行比较和对齐。这样可以确保文本和图像特征的相似性可以通过计算它们之间的距离来衡量。

3.对齐学习

        虽然我们将图像和文本放入了同一个嵌入空间,但是二者并没有把彼此的对应关系。

对齐学习的目的是通过某种机制,使文本和图像特征在共同嵌入空间中尽可能接近。

                                                                  图示

1. 特征提取

首先,分别从文本和图片中提取特征。

文本特征提取示例

文本特征可以通过预训练的语言模型(如BERT、GPT)进行编码

from transformers import BertTokenizer, BertModel
import torch

# 加载预训练的BERT模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')

# 对文本进行编码
inputs = tokenizer("A description of an image", return_tensors="pt")
outputs = model(**inputs)
text_embedding = outputs.last_hidden_state.mean(dim=1)  # 将文本编码为嵌入

图片特征提取示例

图片特征可以通过卷积神经网络(如ResNet、Vision Transformer)进行编码。

import torch
from torchvision import models, transforms
from PIL import Image

# 加载预训练的ResNet模型
resnet = models.resnet50(pretrained=True)
resnet = torch.nn.Sequential(*list(resnet.children())[:-1])  # 去掉最后一层全连接层

# 定义图像预处理步骤
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 加载和预处理图像
img = Image.open("image.jpg")
img_tensor = transform(img).unsqueeze(0)
image_embedding = resnet(img_tensor).squeeze()  # 得到图片的特征向量

2. 映射到共同嵌入空间

        为了实现文本和图片的对齐,需要将它们的特征向量映射到相同的语义空间。在这个空间中,描述相同事物的文本和图片应该具有相似的向量表示。

# 将文本和图片分别映射到共享的嵌入空间
text_projection = torch.nn.Linear(text_embedding.size(1), 512)  # 512维度的共同空间
image_projection = torch.nn.Linear(image_embedding.size(0), 512)

projected_text_embedding = text_projection(text_embedding)
projected_image_embedding = image_projection(image_embedding)

3. 对齐学习

        对齐的核心技术是对比学习。对比学习通过最小化相似文本-图片对的距离,最大化不相关对的距离,从而实现对齐。最常用的损失函数是对比损失(Contrastive Loss),其中以CLIP中使用的InfoNCE Loss最为典型。

import torch.nn.functional as F

# 计算文本和图片嵌入的余弦相似度
logits_per_text = torch.matmul(projected_text_embedding, projected_image_embedding.T)
logits_per_image = torch.matmul(projected_image_embedding, projected_text_embedding.T)

# 生成对比损失
labels = torch.arange(len(text_embedding)).to(text_embedding.device)  # 假设N对样本,生成标签0, 1, 2, ..., N-1
loss_text = F.cross_entropy(logits_per_text, labels)
loss_image = F.cross_entropy(logits_per_image, labels)

loss = (loss_text + loss_image) / 2
print(f"Loss: {loss.item()}")

常见多模态对齐模型:
CLIP(Contrastive Language-Image Pretraining):OpenAI 提出的 CLIP 是一个典型的通过对比学习实现文本和图片对齐的多模态模型。它使用了海量的图文对数据进行预训练,能够在一个共同的嵌入空间中将图片和文本表示对齐。
BLIP(Bootstrapping Language-Image Pretraining):BLIP 是通过引导图片生成语言描述的方式实现对齐的,并且支持跨模态生成任务。
DALL-E:OpenAI 的 DALL-E 模型能够根据文本生成图像,其背后同样涉及到文本与图片的对齐和生成。

### Milvus 图片检索 RAG 实现方案 Milvus 是一种专门用于大规模向量相似度搜索的开源向量数据库,能够支持多种数据模态(如文本图像、音频等)。结合 Retrieval-Augmented Generation (RAG),可以通过 Milvus OpenAI 的模型实现高效的图片检索生成任务。 以下是关于如何使用 Milvus 实现基于图片检索的 RAG 功能的相关说明: #### 1. 数据预处理与特征提取 在构建图片检索系统之前,需要先对图片进行预处理并提取其特征向量。通常会采用深度学习框架中的预训练模型(如 ResNet 或 CLIP),将每张图片转换成固定维度的嵌入向量[^3]。这些嵌入向量随后会被存储到 Milvus 中以便后续查询。 ```python from PIL import Image import torch from torchvision import models, transforms def extract_image_features(image_path): model = models.resnet50(pretrained=True) preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(Image.open(image_path)) input_batch = input_tensor.unsqueeze(0) with torch.no_grad(): output = model(input_batch) return output.squeeze().numpy() ``` #### 2. 向量索引创建与管理 完成图片特征提取之后,需将其导入至 Milvus 并建立相应的索引结构以加速最近邻查找操作。此过程涉及定义集合模式以及指定距离计算方式(例如 L2 范数或余弦相似度)[^4]。 ```python from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection connections.connect() fields = [ FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=False), FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=1000) ] schema = CollectionSchema(fields, "Image Search Database") collection_name = "image_search" if not Collection.has_collection(collection_name): collection = Collection(name=collection_name, schema=schema) else: collection = Collection(name=collection_name) index_params = { 'metric_type': 'L2', 'index_type': 'IVF_FLAT', 'params': {'nlist': 128} } collection.create_index(field_name="embedding", index_params=index_params) ``` #### 3. 查询接口设计 当用户上传待查图片时,同样按照上述流程对其进行特征抽取,并调用 Milvus 提供的 API 接口执行相似性匹配运算。最终返回最接近目标样本的一组候选对象及其对应得分值列表[^5]。 ```python def search_similar_images(query_embedding, top_k=5): collection.load() # Load the collection before searching results = collection.search( data=[query_embedding], anns_field='embedding', param={"metric_type": "L2", "params": {"nprobe": 10}}, limit=top_k, expr=None ) return [(res.id, res.distance) for res in results[0]] ``` --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值