ArcGIS:如何进行建筑密度分析?

本文通过实验数据和步骤,介绍了如何使用ArcGIS进行建筑密度分析,包括建筑用地矢量转栅格、二值化处理、焦点统计、坡度和坡向分析,以及分区统计求取各区域平均建筑密度,旨在揭示不同坡向和坡度的建筑密度特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

01 实验数据

dem5.img(建筑所在区域的高程数据)、居民地.shp数据;

02 实验要求

1)根据居民地.shp生成研究区域的建筑密度栅格图层,图层的范围和分辨率与dem5.img一致。统计建筑密度时按21*21矩形窗口大小统计。

2)依据区域DEM和求得的建筑密度,分析区域不同坡向和不同坡度对应的平均建筑密度。

3)坡向分成南坡和北坡进行分析,得到南坡和北坡的各自平均建筑密度。

4) 坡度按照0-5度;5-15度和>15度进行分析,分别得到各自的平均建筑密度.

03 实验思路

对于图层的范围和分辨率可以在模型的环境中设置,这里不再详细描述;

我们再来理解一下建筑密度。

假如我需要计算以下区域的建筑密度(黄色为建筑用地,灰色为无建筑区域),显然建筑像元数位4,总的像元数为9,那么建筑用地占比 为 4 / 9。如果该区域就是单位面积,那么建筑用地密度就是4 / 9,如果该区域不是单位面积,如果就是除以该区域的总面积数(9 * 像元分辨率的平方或许会更好)。但是本次实验止步于如何求取单位窗口(当前3 × 3窗口)下的建筑用地占比。

另外需要注意,我们求取每一个像元的建筑密度实际上是基于该像元为中心像元的窗口进行建筑占比的计算。

计算每一个像元的建筑占比需要使用到ArcGIS工具箱中 Spatial Analysis Tools——邻域分析——焦点统计;

但是在进行焦点统计之前,我们需要将建筑用地的像元全部赋值为1,不是建筑用地的像元全部赋值为0;

然而我们的建筑用地为矢量数据而非栅格数据,因此需要将矢量数据转化为栅格数据;

转后之后的栅格影像中,建筑用地的像元值为转化工具中所选择的字段值,非建筑用地的像元值为NoData值。因此我们需要对其进行栅格计算,建筑用地的像元全部赋值为1,不是建筑用地的像元(即NoData像元)全部赋值为0。

如此处理好的栅格数据,我们就可以使用焦点统计工具对其进行处理使得每一个像元值为建筑占比,如此得到建筑密度数据。

而对于南北坡和坡地分级,对它们分别进行平均建筑密度的计算,这个简单,首先对DEM数据进行坡度分析和坡向分析,然后对其进行重分类,最后分别进行分区统计即可计算出不同区域(例如南坡、北坡等区域)的平均建筑密度。

04 实验流程

加载数据略;

4.1 建筑用地矢量转栅格

4.2 栅格化的建筑用地二值化处理

4.3 对二值化的建筑用地进行焦点统计

4.4 对DEM进行坡度分析和坡向分析

生成坡向数据

生成坡度数据

对坡度和坡向数据进行重分类

4.5 分区统计求取各区域平均建筑密度

这里不一定使用分区统计,你使用以表格显示分区统计也是可以的,我觉得使用分区统计得到栅格图像可以更好的体现位置关系下的建筑密度;而你觉得得到的表格会更简洁明了,这很正常。

类似的,基于重分类的坡度数据进行建筑密度的均值运算;

最后再设置一下模型运行的环境(处理范围和输出分辨率):

最终构建好的模型如下所示:

### 使用 ArcGIS 计算建筑密度的方法 #### 工具准备 为了计算建筑密度,在ArcGIS环境中可以采用多种方法和技术。一种常用的方式是通过Spatial Analyst扩展模块中的工具来实现这一目标。 对于具体的建筑物邻近度计算,存在专门为此目的设计的插件工具,该工具由C#编写并集成至ArcMap中作为附加组件运行,适用于ArcGIS 10.2及其以上版本[^1]。不过针对更广泛的建筑密度分析,则更多依赖于内置的功能而非特定插件。 #### 数据预处理 在执行任何类型的密度分析之前,确保拥有合适的输入数据至关重要。通常情况下,这涉及到获取精确表示建筑物位置的数据集,这些数据可能以矢量格式(如Shapefile)呈现,其中每个要素代表单个建筑轮廓或多边形边界。 如果原始数据是以栅格形式存在的土地覆盖分类图层,则需先将其转换成适合进一步处理的形式。例如,可以通过“按属性提取”功能选取对应于建筑物类别的像素值,并将结果保存为新的栅格文件;随后运用“栅格转点”操作把上述栅格转化为离散的空间点集合,以便后续用于核密度估计过程[^4]。 #### 密度估算流程 一旦准备好必要的空间对象之后,就可以着手开展实际意义上的建筑密度测算了: - **焦点统计法**:借助于Spatial Analysis Tools下的“邻域分析—>焦点统计”,能够快速获得各网格单元内所含有的平均建筑面积比例情况。此方式特别适用于当研究区被划分为均匀大小的小方格时的情形下进行局部尺度上的评估工作[^2]。 - **核密度估算法**:另一种更为灵活的选择就是应用Kernel Density Estimation (KDE),它允许设定不同的带宽参数从而影响平滑程度以及最终输出图像的表现效果。具体而言,“核密度分析工具”接收一系列事件点位坐标作为输入源,经过加权求和运算后生成连续变化的趋势面模型,直观反映出不同地理位置上相对集中与否的状态特征。 ```python import arcpy from arcpy.sa import * arcpy.CheckOutExtension("spatial") inRaster = "path_to_your_raster" outPointFeatureClass = "output_points.shp" ExtractByAttributes(inRaster, "VALUE = 1").save("building_only.tif") # 提取建筑物类别 RasterToPoint_conversion("building_only.tif", outPointFeatureClass) kernelDensityOutput = KernelDensity(outPointFeatureClass, population_field="NONE") kernelDensityOutput.save("density_output.tif") ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS炒茄子

不装逼我浑身难受aaa

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值