arcgis密度分析

本文介绍了密度分析,即根据输入要素数据集计算区域数据集状况产生连续密度表面。在ArcGIS中,分布密度计算方法有点密度分析、线密度分析和核密度分析三种,还分别阐述了这三种分析方法的操作步骤、参数设置及结果,对比了不同工具输出的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

密度分析

密度分析是指根据输入的要素数据集计算整个区域的数据集状况,从而产生一个连续的密度表面。通过计算密度,将每个采样点的值散布到整个研究区域,并获得输出栅格中每个像元的密度值。在 ArcGIS 中,分布密度的计算方法有点密度分析、线密度分析和核密度分析三种。

 

1.点密度分析

导入实验数据居民点图层和道路图层

在自定义里勾选空间分析模块Spatial Analyst

点击空间分析工具中密度分析内的点密度分析,

参数设置如下,其中输出像元大小表示输出栅格数据集的像元大小。值越小越细腻

点密度分析结果如下

2核密度分析

 核密度分析

 

核密度分析用于计算要素在其周围邻域中的密度,既可计算点要素的密度也可计算线要素的密度。常用于测量建筑密度、获取犯罪情况报告、预测道路或管线对野生动物栖息地造成的影响等。

 

在核密度分析中,落入搜索区域内的点(或线)具有不同的权重,(如犯罪,每个点代表一个犯罪事件,但是核密度分析可以再把它犯罪的严重程度作为一个的权重)靠近格网搜索中心的点或线会被赋予较大的权重,随着其与格网中心距离的加大,权重降低。核密度分析的操作步骤如下:

具体参数设置如下

核密度分析结果如下

 

3线密度分析

线密度分析用于计算每个输出栅格像元邻域内的线状要素的密度,密度的计量单位为“长度单位/面积单位”。理论上,使用以各个栅格像元中心为圆心以搜索半径绘制一个圆,每条线上落入该圆内的部分长度与POPU字段值相乘,对这些数值进行求和,然后将求得的总和除以圆面积就得到该栅格单元的的密度。其基本概念与点密度分析相似

线密度分析操作如下:

具体参数设置如下

结果如下

 

点密度工具与线密度工具的输出与核密度工具的输出的区别

 

对于点密度和线密度,需要指定一个邻域一边计算出各输出像元周围像元的密度。核密 度则可将各点的已知总体数量从点位置开始向四周分散。在核密度中,在各点周围生成表面 所依据的二次公式可表为表面中心(点位置)赋予最高值,并在搜索半径距离范围内减少到

零。对于各输出像元,将计算各分散表面的累计交汇点总数。半径参数值越大,生成的密度栅格的概化程度便越高。

 

### ArcGIS密度估计公式 在 ArcGIS 中,核密度估计用于评估点或线要素的空间分布模式。对于每个输出栅格像元位置,计算该像元周围一定半径内的点数或总长度(针对线),并将其转换为单位面积的数量。 #### 核密度估计的一般表达式如下: \[ \hat{f}_h(x) = \frac{1}{n}\sum_{i=1}^{n} K_h (x - x_i) = \frac{1}{nh} \sum_{i=1}^{n} k\left(\frac{x-x_i}{h}\right), \] 其中 \(K\) 是所选的核函数,\(h\) 表示带宽参数,即搜索半径;而 \(k()\) 则代表标准化后的核函数形式[^2]。 具体来说,在 ArcGIS 实现过程中采用的是高斯型核函数,其定义为: \[ f(d)=\frac{\exp(-d^2/2)}{(b*sqrt(2π))}, \] 这里 \(d\) 代表距离权重因子,它等于当前处理像元中心至样本点之间的欧氏距离除以设定的带宽值 \(b\)【注意这里的表述综合了专业知识】。 当执行核密度估算操作时,用户可以选择指定搜索半径大小以及期望的结果单元比例尺。如果未指定期望的比例尺,则默认情况下会自动调整使得最远的影响范围刚好覆盖到最近邻域内至少三个点的位置[^4]。 ```python import arcpy from arcpy import env env.workspace = "C:/data" arcpy.CheckOutExtension("Spatial") # 执行 Kernel Density 工具 arcpy.gp.KernelDensity_sa( "crime_points.shp", "NONE", "output_density.tif", "", "900 Meters", "SQUARE_MILES" ) ``` 此代码片段展示了如何调用 ArcPy 库来进行基于 Python 的自动化脚本编写,实现对犯罪地点数据集 `crime_points.shp` 进行核密度分析,并保存结果为 TIFF 文件格式的地图图像 `output_density.tif` 【此处展示了一个简单的Python脚本来说明如何应用上述理论概念于实践当中】
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈南GISer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值