数学建模应当掌握的十类算法
文章平均质量分 53
七七喝椰奶
基本功决定高度
展开
-
图象处理算法(介绍)
6. 特征提取(Feature Extraction):特征提取是从图像中提取有用信息的过程,例如:形状、纹理、颜色、大小和方向等。3. 直方图均衡化(Histogram Equalization):直方图均衡化用于增强图像的对比度和亮度,通过调整像素强度值的分布从而使图像更加清晰和易于处理。它可以是低通、高通、带通、带阻滤波器等。5. 分割(Segmentation):图像分割指的是将图像中的像素按照其特定属性或区域进行划分的过程,包括基于区域、基于边缘、基于阈值等方法。原创 2023-11-12 15:55:11 · 577 阅读 · 0 评论 -
数值分析算法(简介)
这些算法只是数值分析中的一部分,还有其他一些算法和技术,也可以根据具体问题的要求进行编写。在编写库函数时,注意考虑算法的正确性、效率和稳定性,并进行必要的测试和验证。当在比赛中使用高级语言进行编程时,可以编写相应的库函数来实现数值分析中常用的算法,如方程组求解、矩阵运算和函数积分等算法。LU分解法(LU Decomposition):将系数矩阵分解为下三角矩阵和上三角矩阵的乘积,并进行前/后代替换,以求解线性方程组。矩阵乘法:编写函数实现两个矩阵的相乘操作,可以使用循环或向量化等方式来提高效率。原创 2023-11-12 15:54:10 · 447 阅读 · 0 评论 -
最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法
当涉及到模拟退火法、神经网络和遗传算法时,它们都是优化和搜索问题的常见算法。下面我将逐个介绍这些算法的基本原理和应用。1. 模拟退火法(Simulated Annealing):模拟退火法是一种全局优化算法,模拟了金属冶炼中的退火过程。它通过接受更差的解决方案的可能性来避免陷入局部最优解。模拟退火法在搜索空间中随机移动,并逐渐减少移动的范围,以找到全局最优解。主要步骤包括初始化解决方案,定义能量函数(目标函数),设置初始温度、迭代次数和退火速度。原创 2023-11-12 15:52:04 · 468 阅读 · 0 评论 -
一些连续离散化方法
生成一组连续数据% 定义自定义的离散化规则% 阈值% 使用自定义规则进行离散化% 将离散结果转换为整数值(0和1)% 显示结果。原创 2023-11-12 15:46:54 · 1640 阅读 · 0 评论 -
网格算法和穷举法
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具当需要在多个离散的点(比如网格点)中寻找最优解时,网格算法和穷举法都是常用的方法。网格算法,也称为坐标遍历法,是一种基本的离散搜索算法。其主要思想是将区域按网格划分,并在每个网格点处对函数进行计算,从而逐个比较取得最优解。网格算法总是能找到全局最优解,但是当搜索区域维度增多时,计算时间会呈指数级增长。原创 2023-11-12 15:41:48 · 444 阅读 · 0 评论 -
动态规划、回溯搜索、分治算法、分支定界算法
当解决一些复杂问题时,我们常常需要采用一些高级的算法来提高效率和准确性。以下是动态规划、回溯搜索、分治算法和分支定界算法的简介:1. 动态规划(Dynamic Programming):动态规划是一种将问题分解为子问题,并通过解决子问题来解决原始问题的算法思想。它通常适用于具有重叠子问题和最优子结构性质的问题。动态规划包括以下几个步骤:定义子问题,建立状态转移方程,确定初始条件,迭代求解子问题,最后得到原问题的解。通过存储中间结果,动态规划可以避免重复计算,提高算法的效率。原创 2023-11-12 15:14:29 · 592 阅读 · 0 评论 -
图论算法(最短路、网络流、二分图)
1. 最短路算法最短路算法是一类用于在加权有向图中搜索从起点到终点最短路径(或距离)的算法。其中最为经典的算法为和 Bellman-Ford 算法,分别适用于没有负权边和存在负权边的情况。此外,还有算法,它适用于解决所有节点对之间的最短路问题。最短路算法在计算机网络、路径规划、交通流量控制等领域有着广泛应用。其实还有A*算法,只不过那个在游戏领域用的比较多2. 网络流算法网络流算法是用于解决最大流和最小割问题的一种算法家族。原创 2023-11-12 13:21:05 · 250 阅读 · 0 评论 -
线性规划、整数规划、多元规划、二次规划等规划类问题
规划问题是数学优化的重要分支,其目的是在一组限制下最大限度地优化目标函数。常见的规划问题包括线性规划、整数规划、多元规划和二次规划。- 线性规划 (Linear Programming):是将一个线性目标函数与一组线性约束相结合,目标是找到一组变量的值,以最大限度地满足目标函数并同时满足所有约束条件。线性规划应用广泛,例如用于生产计划、资源分配、交通网络设计等。- 整数规划(Integer Programming):类似于线性规划,只不过解必须是整数。原创 2023-11-12 12:56:45 · 833 阅读 · 0 评论 -
数据拟合、参数估计、插值等数据处理算法
数据拟合:数据拟合是通过选择或构建合适的函数模型,将给定的数据点与该函数模型进行匹配和拟合的过程。常见的数据拟合方法包括最小二乘法和非线性最小二乘法。最小二乘法通过最小化实际数据与拟合函数的残差平方和来求解最优拟合参数。非线性最小二乘法则通过迭代优化算法来拟合非线性函数模型。参数估计:参数估计是利用给定的数据,通过估计参数的值来拟合一个数学模型。参数估计的目标是找到最符合数据的参数组合,使模型的预测值与实际观测值最接近。常用的参数估计方法包括最大似然估计和最小二乘估计。原创 2023-11-12 12:47:21 · 1185 阅读 · 0 评论 -
蒙特卡罗算法
蒙特卡罗算法是一种基于随机采样的数值计算方法,常用于解决复杂问题和优化求解。它的核心思想是通过生成大量的随机样本,利用概率统计的方法来估计问题的解或者优化目标的最优值。蒙特卡罗算法的具体步骤如下:1. 定义问题:确定需要求解的问题和目标。2. 设定边界:给定问题的输入和约束条件。3. 随机采样:生成大量的随机样本,可以使用伪随机数生成器来模拟随机性。4. 模拟计算:对于每个样本,使用问题的定义和约束条件进行计算或模拟。原创 2023-11-12 11:52:43 · 316 阅读 · 0 评论