【2025深度学习环境搭建-1】在Win11上用WSL2和Docker解锁GPU加速

建议有:

  • 较新的win11电脑,GPU是nvidia
  • 一点点Linux基础
  • 一点点Docker基础

一、安装WSL2

【控制面板】=》【程序】=》【启用或关闭Windows功能】

打开三个功能:【Hyper-V】【Virtual Machine Platform】【适用于Linux的Windows子系统】

可能看不到Hyper-V,百度:win11没有Hyper-V
在这里插入图片描述

在管理员模式下打开 PowerShell 或 Windows 命令提示符,方法是右键单击并选择“以管理员身份运行”,输入 wsl --install 命令,然后重启计算机。

wsl --install
wsl --list --online # 显示可安装的WSL系统

在这里插入图片描述

wsl --install -d Ubuntu-24.04 # 安装Ubuntu-24.04
wsl --list # 显示本地的WSL系统

下图中可看到Ubuntu-24.04,这就是我们刚才安装的
在这里插入图片描述

1.1 启动wsl

在终端中输入wsl启动wsl

wsl  #启动wsl,要在Windows终端中运行

顺便一提,关闭wsl的命令是wsl --shutdown,要在Windows终端中运行

在【开始】菜单中找到Ubuntu-24.04,打开它
在这里插入图片描述

根据提示设置好用户名和密码

设置root用户的密码

sudo passwd # 设置root用户的密码

你的CUDA版本够新,则此时可在wsl中输入nvidia-smi查看显卡信息

nvidia-smi

在这里插入图片描述

二、安装Docker Desktop(自行换镜像源)

进入docker官网,下载Dockers Desktop

https://www.docker.com/

在右上角打开设置,如下图设置

在这里插入图片描述
在这里插入图片描述

三、安装NVIDIA Container Toolkit

nvidia-docker2 和 NVIDIA Container Toolkit 的区别及推荐
打开WSL,执行以下命令
配置生产存储库:

curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

从存储库更新软件包列表:

sudo apt-get update

安装 NVIDIA Container Toolkit 软件包:

sudo apt-get install -y nvidia-container-toolkit

重启Docker(在Docker Desktop中操作也行)

sudo systemctl daemon-reload
sudo systemctl restart docker

四、确保Docker能使用GPU

注意docker拉nvidia/cuda镜像时,拉取的cuda版本不能高于本地的cuda版本

我本地的cuda版本是12.7,则我无法拉取镜像docker pull nvidia/cuda:12.8-base-ubuntu24.04,因为这个镜像的cuda版本是12.8

执行以下命令,正常情况下会输出nvidia显卡信息【表示本机的Docker可使用GPU】,如图所示

docker run --rm --gpus all nvidia/cuda:12.6.3-base-ubuntu24.04 nvidia-smi

在这里插入图片描述

若您认为以上cuda版本过高,则可找个低版本的镜像,
命令如下:docker run --rm --gpus all nvidia/cuda:11.0.3-base-ubuntu16.04 nvidia-smi

找镜像的网站:https://hub.docker.com/r/nvidia/cuda/tags

现在,我们可以在Docker环境中使用GPU啦!下一步我们将搭建一个深度学习环境,以满足我们的深度学习研究需求!

下一步:pytorch+Docker+VS Code+DevContainer搭建本地深度学习环境

参考

WSL 2官方安装教程

WSL 2 上的 Docker 入门

NVIDIA Container Toolkit官方安装教程

nvidia/cuda镜像搜索网站

### ComfyUI 安装部署教程 #### 选择合适的安装方式 对于希望快速上手的用户来说,可以考虑使用官方提供的整合包或是秋叶的一键启动器来进行安装[^2]。这些工具简化了许多复杂的配置过程,使得初学者能够更轻松地开始使用ComfyUI。 如果倾向于更加灵活可控的方式,则可以通过Docker实现一键安装部署。这种方式不仅操作简便快捷,而且能有效隔离运行环境,避免与其他软件发生冲突。 #### 准备工作 无论采用哪种方式进行安装,在此之前都需要确保计算机满足一定的硬件条件,并完成必要的前置准备工作: - **操作系统**:Windows、macOS 或 Linux 均可支持; - **Python 版本**:建议使用 Python 3.x 及以上版本; - **依赖库安装**:部分功能可能需要额外安装特定的 Python 库或其他依赖项; #### 使用 Docker 进行安装 以下是基于 Docker 的具体安装步骤: 1. 安装 Docker Engine Docker Compose (适用于 Windows 用户还需安装 WSL2); 2. 下载项目源码或克隆 GitHub 上的相关仓库; 3. 修改 `docker-compose.yml` 文件中的参数设置以适应个人需求; 4. 执行命令启动容器: ```bash docker-compose up -d ``` 此时应该可以在浏览器中访问指定端口查看到已经成功运行的应用程序界面了。 #### 配置与优化 初次启动后还需要进一步调整一些选项来提升性能表现或者解锁更多高级特性。这包括但不限于加载自定义模型权重文件、启用 GPU 加速计算等功能模块。详细的说明文档通常会随同发布一起提供给开发者参考学习[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值