现在失业三件套就是滴滴,外卖和自媒体,而且视频赛道也越来越卷了。
每一个搞自媒体的同学肯定都希望能有一个自动生成视频,或者剪辑的工具。
今天给大家介绍一个开源项目,就是可以根据一个主题或者关键词生成视频。
这个项目目前还是非常活跃的,项目使用 Python 开发,框架用的 FastAPI。不得不说,这个框架现在越来越多被使用了。
项目简介
只需提供一个主题或关键词 ,就可以全自动生成视频文案、素材、字幕、还有背景音乐,然后合成一个高清的短视频。
功能特性:
-
完整的 MVC 架构,代码 结构清晰,易于维护,支持
API
和Web 界面
-
支持视频文案 AI 自动生成,也可以自定义文案
-
支持多种 高清视频 尺寸
- 竖屏 9:16,
1080x1920
- 横屏 16:9,
1920x1080
- 竖屏 9:16,
-
支持 批量视频生成,可以一次生成多个视频,然后选择一个最满意的
-
支持 视频片段时长设置,方便调节素材切换频率
-
支持 中文 和 英文 视频文案
-
支持 多种语音 合成
-
支持 字幕生成,可以调整
字体
、位置
、颜色
、大小
,同时支持字幕描边
设置 -
支持 背景音乐,随机或者指定音乐文件,可设置
背景音乐音量
-
视频素材来源 高清,而且 无版权
-
支持 OpenAI、moonshot、Azure、gpt4free、one-api、通义千问、Google Gemini、Ollama 等多种模型接入
我体验了一下,页面操作起来还是很方便的,傻瓜式操作。
如果不自己写文案的话,基本就写一个主题或者关键词就可以了,基本一分钟左右就可以生成一个 30s 左右的视频。
现在的素材都是程序自动从网上下载的,我看已经有人提 issue 说是不是可以支持使用自己的素材,这个点我还是很期待的。
重点是作者也列入到后期计划了。
项目部署
部署很方便,README 写的也很清楚。可以直接用安装包,手动部署,就是 Python 项目部署那一套逻辑,先建虚拟环境,再装包。
还支持 Docker 方式部署,这也是我选择的方式,下面就详细介绍一下。
直接到项目目录下执行:
docker-compose up
如果遇到安装系统包失败的问题:
Unable to connect to deb.debian.org
可以通过修改 Dockerfile,改变镜像源的方法解决:
RUN echo "deb http://deb.debian.org/debian buster main" > /etc/apt/sources.list
RUN sed -i 's/deb.debian.org/mirrors.aliyun.com/g' /etc/apt/sources.list
当使用中文主题生成视频时,遇到了下面这个问题,英文的话是正常的。
AttributeError: 'NoneType' object has no attribute 'get'
# 具体原因如下:
failed to generate audio, maybe the network is not available.
if you are in China, please use a VPN.
我没有深究背后的原因,如果只是测试的话,直接使用英文就行了。
项目使用
我部署的是最新版本 v1.1.0,具体的页面就是上文提到的那样。
总共就分了四块,分别是设置文案,视频,音频和字幕。
必填的其实只有主题,像文案都可以根据主题自动生成,其他的设置基本都是简单选一选,点一点就可以了。
后端日志输出也很丰富,从日志可以看到,程序会根据主题搜索素材,然后下载视频。
接下来就是把下载的视频剪辑,再根据 AI 的文案合成一个最终版视频,并在页面上提供了下载功能。
关注我,持续为大家分享 AI 领域的开源项目。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓