前言
近年来,大型语言模型 (LLM) 在医疗领域展现出巨大潜力,能够帮助医生和研究人员更快地获取信息、分析数据,并提高医疗服务效率。然而,目前市场上大多数医疗 LLM 都是闭源模型,限制了其在学术研究和应用领域的推广。为了打破这一现状,促进医疗 AI 的发展,越来越多的研究团队开始致力于开发开源的医疗 LLM。
技术特点
Llama3-Aloe-8B-Alpha 是由巴塞罗那超级计算中心 (BSC) 和巴塞罗那理工大学 (UPC) 联合开发的开源医疗大模型,其基于 Meta 的 Llama 3 模型进行微调,并采用了多种技术手段来提升模型的性能和可靠性。
- Huggingface模型下载: huggingface.co/HPAI-BSC/Ll…
- AI 快站模型免费加速下载: aifasthub.com/models/HPAI…
- 基于 Llama 3 模型,拥有强大语言基础
Llama3-Aloe-8B-Alpha 以 Meta 的 Llama 3 模型为基础,继承了 Llama 3 模型在语言理解和生成方面的优势。Llama 3 模型经过了海量数据的训练,能够理解和生成各种形式的文本内容,为医疗领域提供了强大的语言处理能力。值得注意的是,Llama 3 8B 模型本身已经展现出了令人瞩目的性能,在各种语言、推理、编码和数学基准测试中,都超越了同等大小甚至更大的模型性能。
- 合成数据 增强,提升模型的专业性
为了提升模型在医疗领域的专业性,研究团队采用了合成数据增强技术。他们利用 Mixtral-8x7B 模型,根据医学问答数据集的训练集生成大量的 CoT (Chain of Thought) 答案,并将其加入到模型的训练数据中。CoT 的核心思想是引导模型通过逐步推理来解决问题,例如,在处理多选题时,模型会先概括问题,然后分析每个选项,最后通过推理步骤得出最终答案。这种策略可以帮助模型更深入地理解医学问题,并生成更合理的答案。
- 模型合并和对齐,提升模型的鲁棒性和安全性
研究团队将多个经过指令微调的 Llama 3 模型进行合并,并通过直接偏好优化 (DPO) 对模型进行了对齐训练,以提升模型的鲁棒性和安全性。模型合并的目的是结合不同模型的优势,提高模型的泛化能力。DPO 训练则通过收集人类对模型生成结果的偏好数据,对模型进行微调,使其更符合人类的价值观和道德规范。
性能表现
Llama3-Aloe-8B-Alpha 在多个医疗领域基准测试中展现出优异的性能,其性能超越了 MedAlpaca 和 PMC-LLaMA 等其他开源医疗大模型。
- 医疗领域基准测试表现出色
Llama3-Aloe-8B-Alpha 在 MedMCQA、MedQA 和 PubMedQA 等医疗领域基准测试中,展现出了领先的性能。
- MedMCQA: 该数据集包含来自印度医学院入学考试的 4,183 个 4 选项选择题。
- MedQA: 该数据集包含 1,273 个美国医疗执照考试 (USMLE) 问题,每个问题有 4 或 5 个选项。
- PubMedQA: 该数据集包含 1,000 个专业标注的 PubMed 文献问答样本。
在这些测试中,Llama3-Aloe-8B-Alpha 表现出色,例如,在 PubMedQA 测试中,其表现超过了 Meditron 70B 模型,说明了其在医学信息检索和理解方面的优势。
- 对齐训练提升模型安全性
Llama3-Aloe-8B-Alpha 通过直接偏好优化 (DPO) 对模型进行安全对齐,能够在回答问题时更加安全可靠,降低了模型产生有害或不道德内容的风险。研究团队通过收集人类对模型生成结果的偏好数据,对模型进行了微调,使其更符合人类的价值观和道德规范。
应用场景
Llama3-Aloe-8B-Alpha 可以应用于多个医疗领域的场景,例如:
- 医学信息检索: 帮助医生快速查找和理解相关文献,提高诊断和治疗效率。
- 医学问答: 回答医生的专业问题,帮助他们更好地理解疾病、药物和治疗方案。
- 医学文本摘要: 将大量的医学文献和报告进行摘要,方便医生快速了解关键信息。
- 医学数据分析: 协助研究人员分析医学数据,寻找疾病的病因和治疗方法。
总结
Llama3-Aloe-8B-Alpha 的开源发布,为医疗 AI 研究和应用领域提供了强大的工具,它不仅展现出了优异的性能,还通过对齐训练提高了模型的安全性,并通过合成数据增强提升了模型的专业性。随着技术的不断发展,相信 Llama3-Aloe-8B-Alpha 会在更多医疗场景发挥重要作用,为人类健康事业贡献力量。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓