Ollama:本地大语言模型解决方案

在人工智能领域,大语言模型(LLM)因其在自然语言处理上的强大能力而备受瞩目。然而,这些模型往往需要大量的计算资源和网络连接,限制了它们在本地环境的应用。Ollama 的推出,为这一问题提供了解决方案。作为一个开源平台,Ollama 允许用户在本地机器上轻松设置和运行 LLM,简化了整个流程,使得本地部署语言模型变得更加可行和高效。

简介

Ollama 是一个开源的人工智能模型项目,专注于开发高质量的语言模型。该项目的目标是使先进的自然语言处理技术更加普及和易于获取,同时促进研究社区的合作与创新。Ollama 项目提供了多种语言模型的训练代码、数据集以及预训练好的模型权重,以便研究人员和开发者能够快速构建和部署自己的语言生成应用。

Ollama 的核心特性

开源与易用性

Ollama 的最大优势之一是它的开源性质。这意味着开发者社区可以共同参与到平台的开发和优化中来,同时也保证了软件的透明度和可定制性。Ollama 的易用性体现在它简化了下载、安装和与 LLM 交互的过程。用户只需通过简单的命令行操作,即可在本地机器上启动和运行模型。

REPL交互环境

Ollama 内置了 REPL(Read-Eval-Print Loop)功能,这是一种交互式编程环境,允许用户输入代码并立即看到结果。这种即时反馈机制极大地提高了开发效率,使得调试和实验变得更加便捷。

模型管理

Ollama 提供了一套模型管理工具,用户可以通过命令行轻松查看、下载、删除和运行不同的语言模型。这包括一个在线模型库,用户可以浏览并了解各种模型的详细信息,如模型大小、参数等。

硬件兼容性

Ollama 支持多种硬件配置,无论是 GPU 还是 CPU,都能运行语言模型。这为用户提供了灵活的选择,即使在没有高性能 GPU 的情况下,也能在 CPU 上运行模型,尽管速度会有所减慢。

使用Ollama

硬件需求

获取 Ollama 中可用模型的列表:
ollama.com/library

在这里插入图片描述

GPU

查看 Ollama 支持的 GPU:
github.com/ollama/olla…

CPU

对于大型模型,如 7B、13B 或 33B,Ollama 建议至少分别有 8GB、16GB 和 32GB 的 RAM。

安装与启动

下载链接如下:
ollama.com/download

下载 Ollama 后,用户可以通过命令行界面(Terminal)快速启动模型。例如,使用ollama run phi3命令下载并运行模型 phi3。如果需要先下载模型再运行,可以使用ollama pull phi3命令。

在这里插入图片描述

在 Ollama 的 REPL 环境中,用户可以通过输入/?来查看所有可用的命令和快捷方式。这包括退出REPL的命令/bye,以及获取快捷方式列表的命令/? shortcuts

ollama 常用命令如下:

  • ollama ls 显示拥有的模型
  • ollama rm <modelname> 删除指定模型
  • ollama status 查看模型状态
  • ollama logs 查看模型日志

LangChain 集成

Ollama 支持使用 LangChain 交互。使用Llama3 为例:

准备工作

ollama pull llama3

pip install langchain langchain-ollama ollama

使用示例

from langchain_ollama import OllamaLLM  
  
model = OllamaLLM(model="llama3")  
  
response = model.invoke(input="What's up?")  
print(response)  
  
"""  
Not much! Just an AI, waiting to chat with you. How about you? What's new and exciting in your world?  
"""

开始一个简单对话:

from langchain_ollama import OllamaLLM  
from langchain_core.prompts import ChatPromptTemplate  
  
template = """  
User will ask you questions. Answer it.  
  
The history of this conversation: {context}  
  
Question: {question}  
  
Answer:  
"""  
  
model = OllamaLLM(model="llama3")  
prompt = ChatPromptTemplate.from_template(template)  
chain = prompt | model  
  
def chat():  
context = ""  
print("Welcome to the AI Chatbot! Type 'exit' to quit.")  
while True:  
question = input("You: ")  
if question.lower() == "exit":  
break  
response = chain.invoke({"context":context, "question": question})  
print(f"AI: {response}")  
context += f"\nUser: {question}\nAI: {response}"  
  
chat()  

Web 使用

可以按照以下链接的说明安装 open-webui:
github.com/open-webui/…

在这里插入图片描述

结语

Ollama 作为本地运行语言模型的工具,不仅降低了对云端资源的依赖,还提高了数据处理的安全性和响应速度。它通过提供 REPL 环境、模型管理命令和与 LangChain 的交互能力,极大地丰富了用户与语言模型的交互方式。随着技术的不断发展,Ollama 有望进一步推动本地 AI 应用的普及和深入,为开发者和企业提供更多的可能性。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值