首个DeepSeek-R1全开源复现Open-R1来了

Open-R1:huggingface出品,DeepSeek-R1的完全开源复现,短短一天已经冲上1.9k Star,这个仓库仍在建设中。

Open-R1的目标是构建DeepSeek-R1流程中缺失的部分,以便每个人都可以复现并在此基础上进行开发。项目设计简单,主要包含以下内容:

  • src/open_r1 包含用于训练和评估模型以及生成合成数据的脚本:

  • grpo.py:使用GRPO在给定数据集上训练模型。

  • sft.py:在数据集上对模型进行简单的SFT(监督微调)。

  • evaluate.py:在R1基准测试上评估模型。

  • generate.py:使用Distilabel从模型生成合成数据。

  • Makefile:包含针对R1流程中每个步骤的易于运行的命令,利用上述脚本。

Open-R1将以DeepSeek-R1技术报告为指导,该报告大致可以分为三个主要步骤:

  1. 第一步:通过从DeepSeek-R1中提取高质量语料库,复现R1-Distill模型。

  2. 第二步:复现DeepSeek用于创建R1-Zero的纯强化学习(RL)流程。这可能涉及为数学、推理和代码创建新的大规模数据集。

  3. 第三步:展示能够通过多阶段训练从基础模型过渡到经过RL调整的模型。

训练模型

支持使用DDP(分布式数据并行)或DeepSpeed ZeRO-2和ZeRO-3来训练模型。要切换训练方法,只需更改configs文件夹中加速器(accelerate)YAML配置文件的路径即可。

以下训练命令是针对配备8块H100(80GB)显卡的单个节点配置的。如果使用不同的硬件或拓扑结构,可能需要调整批量大小和梯度累积步数。

  • SFT阶段
accelerate launch --config_file=configs/zero3.yaml src/open_r1/sft.py \`    `--model_name_or_path Qwen/Qwen2.5-Math-1.5B-Instruct \`    `--dataset_name HuggingFaceH4/Bespoke-Stratos-17k \`    `--learning_rate 2.0e-5 \`    `--num_train_epochs 1 \`    `--packing \`    `--max_seq_length 4096 \`    `--per_device_train_batch_size 4 \`    `--per_device_eval_batch_size 4 \`    `--gradient_accumulation_steps 4 \`    `--gradient_checkpointing \`    `--bf16 \`    `--logging_steps 5 \`    `--eval_strategy steps \`    `--eval_steps 100 \`    `--output_dir data/Qwen2.5-1.5B-Open-R1-Distill
  • GRPO

accelerate launch --config_file configs/zero3.yaml src/open_r1/grpo.py \`    `--output_dir DeepSeek-R1-Distill-Qwen-7B-GRPO \`    `--model_name_or_path deepseek-ai/DeepSeek-R1-Distill-Qwen-7B \`    `--dataset_name AI-MO/NuminaMath-TIR \`    `--max_prompt_length 256 \`    `--per_device_train_batch_size 1 \`    `--gradient_accumulation_steps 16 \`    `--logging_steps 10 \`    `--bf16

数据生成

  • 从一个小型蒸馏的R1模型生成数据

1块H100显卡,从deepseek-ai/DeepSeek-R1-Distill-Qwen-7B生成数据

  • 从DeepSeek-R1生成数据

使用了2个节点,每个节点配备8块H100显卡,从DeepSeek-R1模型生成数据

https://github.com/huggingface/open-r1

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值