最近,总有吃瓜群众问:通过API的方式,来调用市面上各种DeepSeek服务,到底安全不安全,会不会造成隐私或者数据泄露?
先说结论:不安全!
无论是通过API还是通过网页版,或者各种APP客户端,都存在一定的安全风险。
具体存在哪些风险呢?
首先明确一点,当通过API或者WEB/APP使用大模型服务的时候,你的Prompt信息(输入的文本、问题、指令,提交的图片或者文档等等),都会被传送到公网和云端服务器。
那么以下环节,就可能存在风险↓
1、数据传输风险
当你通过网络将数据发送到云端API时(网页版也一样),如果这个链接不是HTTPS加密的,那么,你就要小心了,数据可能会被拦截或窃听。
当然,绝大多数正规服务提供商都会默认使用加密传输,但是,也不排除某些草台班子搞出“超纲”的操作。(尤其要注意某些山寨的或者廉价的服务商)
2、 服务提供商的隐私政策与存储策略
用户提交到服务器端的数据,在大模型完成推理任务后,这些数据默认会被“短暂保存”,主要用于日志、合规审计、服务优化等目的(这是作为服务商必须的,也是合理正当的)。
但不排除数据会被长期保存,并被用于训练,这需要看不同服务商的隐私政策。
所以,大家在使用注册使用服务的时候,一定要仔细看用户协议和隐私政策,确认数据是否会被存储、如何存储、存储多久,以及数据是否会被使用。
比如DeepSeek官方API的用户协议,是这样写的↓
这是另外一家第三方API提供商的协议,明确说明不会访问和使用。
当然因为这是一家纯纯的第三方,并没有自家的模型,所以不拿数据去训练也是理所应答的。↓
我们再看ChatGPT的协议,就很霸道了。
明确说了会将数据用于训练,不过他们也给了一个可选的通道,允许用户禁止自己的数据用于训练。
当然,对于商业用户,OpenAI默认不会把他们的数据拿去训练。
不管协议怎么约定,数据在别人手里,总还是让人觉得不妥帖的。
与本地部署的模型相比,云端API意味着你无法完全控制数据的处理环境,你必须依赖服务提供商的承诺和能力来保护数据。
3. 大模型服务商自身的安全能力
即使API服务商“一心向善”,恪守不碰数据的原则。
但如果他们安全能力不足(比如服务器被黑客攻击),你的数据仍然会面临泄露风险。
选择有良好声誉、技术实力雄厚、具备强大安全认证(如ISO 27001)的提供商可以降低这种风险。
4. 本地RAG知识库的数据泄露
还有一种典型的应用场景,那就是在调用API的同时,本地部署了知识库做RAG。
有小伙伴问:本地的知识库会被传输到云端吗?
我们先来看一下完整的数据交互流程,由于增加了RAG,整个流程多了两步。
通过这个流程可见,本地知识库在使用过程中,并不会被完整上传到云端。
但是与用户问题最相关知识片段,会被上传、存储。
所以,使用RAG,不仅当前提交的内容有泄露风险,本地知识库也会泄露,知识库中要避免存储敏感信息(隐私数据、商业机密)。
总的来说,调用云端大模型API服务确实有一定的数据泄露风险,如果有严苛的合规要求和数据安全需求,建议选择以下方案↓
1、完全本地化部署:一体机、本地化集群、专属云等,牺牲灵活性和成本来换安全。
2、云上专属模型部署:选择可靠的、有数据安全背书的AI Infra服务商,部署专属模型。
3、如必须调用API,则增加数据脱敏措施,避免提交敏感数据,或者在知识库中存放敏感数据。
当然,本地化部署并不一定就比云上安全,这取决于本地的安全防护能力、运维水平和安全意识。
就好比,把钱放在家里未必比放在银行保险柜安全
。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓