阿里全球首发!Qwen2.5-Omni免费尝鲜:多模态全能王,视频生成+语音通话一键玩转!

阿里通义千问团队又搞事情了!继多模态问答、文档解析后,Qwen Chat。 官网直达(https://chat.qwen.ai)重磅上线「视频生成」「实时语音视频聊天」功能!无需复杂操作,一个网站就能实现“看听说写”全模态交互,堪称打工人的效率核弹!💥  **


🔥 划重点!Qwen Chat新功能有多炸?

1️⃣ 视频生成:一键生成创意内容

上传一段文字或图片,Qwen Chat就能自动生成短视频!无论是产品宣传片、教学动画,还是创意短剧,AI都能根据你的需求快速输出。

  • 打工人:输入PPT大纲,生成动态演示视频;

  • 自媒体:上传脚本,AI自动配画面+字幕,10分钟搞定一条爆款视频;

  • 教育党:将知识点转化为趣味动画,学习效率翻倍!

图片

2️⃣ 实时语音/视频聊天:像打电话一样用AI

每天免费10次!无需打字,直接和AI语音对话或视频通话,体验科幻片般的交互:

  • 实时翻译:跨国会议中,AI同步翻译并生成双语字幕;

  • 智能顾问:拍下商品界面,视频连线AI分析折扣规则;

  • 生活助手:厨房做饭时,视频指导火候和步骤,语音问答零延迟!
    注:视频通话限时3分钟,Beta版体验中


💡 为什么说Qwen Chat是全能王?

✅ 多模态输入输出,一个模型全搞定

Qwen Chat基于Qwen2.5-Omni-7B模型,原生支持文本、图片、音频、视频的混合输入,并直接生成语音+文字+视频反馈,彻底告别传统AI的“多模型串联”低效模式。

图片

✅ Thinker-Talker架构:边思考边说话
  • Thinker(思考者):实时解析视频中的动作、音频中的情绪,甚至能同步分析报表数据与语音指令;

  • Talker(说话者):以流式输出自然语音,响应速度媲美真人对话。
    实测中,AI能边看论文边语音讲解,还能根据你的表情调整语气,简直“成精”了!

✅ 手机也能跑!开源免费商用

模型仅7B参数,iPhone、安卓机均可部署,且基于Apache 2.0协议开源,开发者可免费商用。


🚀 实测体验:3大场景爽到飞起

📹 场景1:视频创作
  1. 输入“生成一段科技感产品宣传片,时长30秒”;

  2. AI自动编写分镜脚本,合成3D动画+背景音乐;

  3. 支持预览并导出4K高清视频,全程不到5分钟!

🎙️ 场景2:跨国会议
  1. 开启视频通话,AI实时翻译中/英/日等多语言;

  2. 自动生成带时间戳的会议纪要,重点数据自动标红;

  3. 会后一键生成PPT,图表直接嵌入视频片段。

👩🏫 场景3:AI家教
  1. 拍下数学题,AI视频分步骤讲解;

  2. 支持手写批注互动,答错时自动推送类似题型;

  3. 语音生成学习报告,薄弱点一目了然。


📢 用户怎么说?

  • 实时视频指导做菜,锅糊了AI比我还急!

  • “开会用Qwen生成双语字幕,老板以为我偷偷雇了同传”

  • “开源界天花板!连夜把模型塞进智能眼镜,秒变钢铁侠”


🔮 未来还能期待什么?

官方剧透即将上线:

  • AI数字人:自定义虚拟形象,24小时直播带货;

  • 3D建模:文字生成可交互的3D场景;

  • 情绪感知:通过表情和语调判断用户情绪,提供情感支持。


📱 立即上车!

访问官网 https://chat.qwen.ai,用QQ邮箱注册即可免费体验!
💡小贴士:视频生成功能需选择Qwen2.5-Plus模型,语音通话建议使用Chrome浏览器

 

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### Qwen2.5-Omni-7B 模型介绍 Qwen2.5-Omni-7B 是通义千问系列中的多模态大模型之一,具有强大的跨领域理解和生成能力。该模型支持多种任务场景,包括但不限于文本生成、图像理解、语音处理以及复杂逻辑推理等[^1]。 #### 主要特性 1. **大规模参数量**:Qwen2.5-Omni-7B 的参数规模达到 70亿级别,能够更好地捕捉复杂的模式并提供高质量的结果。 2. **多模态融合**:除了传统的自然语言处理外,还集成了视觉和音频等多种感知技术,使得它可以应对更加丰富的应用场景。 3. **高效推理性能**:针对实际应用需求优化后的架构设计,在保持高精度的同时降低了计算资源消耗,适合部署于不同硬件环境之中。 4. **广泛的适配性**:无论是云端服务器还是边缘设备上都能实现良好运行效果;同时也提供了灵活易用接口供开发者快速集成到各自项目当中去[^2]。 #### 下载方式 对于希望获取此版本模型文件的用户来说,可以通过以下两种途径完成下载操作: ##### 方法一 使用 ModelScope 平台命令行工具 通过 pip 安装 modelscope 工具包之后执行如下指令即可获得对应权重数据: ```bash pip install modelscope modelscope download --model Qwen/Qwen2.5-Omni-7B ``` ##### 方法二 利用 Ollama 实现本地化加载 如果倾向于采用更轻量化解决方案,则可以考虑借助开源框架 Ollama 来管理整个流程。具体而言只需访问其官网页面找到名为 `qwen2.5-omni` 的选项(注意区分大小写),接着按照提示完成必要的配置步骤便能顺利取得目标资产了。需要注意的是,由于此类大型预训练模型通常占据较多存储空间,因此提前确认剩余容量是否充足显得尤为重要——以当前为例大约需要预留至少 8GB 可用磁盘位置来容纳全部组件[^3]。 ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Omni-7B") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Omni-7B", device_map="auto", torch_dtype=torch.float16) input_text = "请介绍一下量子计算机的工作原理" inputs = tokenizer(input_text, return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值