DeepSeek医疗革命:基于420余家医院的实证研究,多场景应用深度分析!

一、患者服务类

1、智能导诊系统  

(1)症状分诊与科室匹配(74次)

代表医院:东南大学附属中大医院(DeepSeek-R1:671B)

(2)院内导航与方言识别(4次)

典型案例:顺德第五人民医院(DeepSeek-R1)支持院内导航,支持“肚子像被孙悟空打翻炼丹炉”等生动描述识别

2、预问诊与报告解读  

(1)线上病情梳理与结构化报告生成(22次)

代表医院:武汉市中心医院(DeepSeek-R1:671B)

(2)检验等报告智能分析(60次)

代表医院:甘肃省妇幼保健院(DeepSeek-R1:671B)

3、健康管理服务  

(1)智能随访(18次)

特色案例:广东省妇幼保健院(DeepSeek-R1)构建全生命周期健康管理体系

(2)疫苗接种智能提醒(1次)

区域覆盖:丰泽区泉秀街道社区卫生服务中心(DeepSeek-R1:671B+腾讯混元)

二、临床支持类

1、辅助诊断系统  

(1)辅助诊断(66次)

代表医院:北京协和医院(DeepSeek-R1:671B),提供诊断参考,根据患者的个性情况定制个性化的治疗计划

2、病历智能化处理  

(1)结构化病历生成(37次)

效率提升:厦门大学附属第一医院(DeepSeek-R1:671B),根据病历内容自动生成高质量的文书初稿,医生只需进行审核和修订

(2)病历质控(38次)

典型应用:重庆大学附属仁济医院市五院(DeepSeek-R1),生成详细的病历质控分析报告,针对问题给出具体修改建议,实现医院病历的智能内涵控制

3、合理用药支持  

(1)药物相互作用审核(5次)

典型案例:丹阳市人民医院(DeepSeek-R1:70B/32B 混合专家架构)治疗方案辅助与药物相互作用提醒

(2)抗菌药物规范提醒(2次)

代笔医院:徐州医科大学附属医院(DeepSeek-R1)抗菌药物合理化应用

三、医院管理类

1、运营优化系统  

(1)门诊流量预测(1次)

部署案例:阜阳市人民医院(DeepSeek-R1)门诊流量预测

(2)设备动态调度(4次)

技术创新:巴林右旗医院(DeepSeek-R1)医院资源动态调配

2、质量监控体系  

(1)病历内涵质控(38次)

管理标杆:首都医科大学附属北京积水潭医院(DeepSeek-R1)病历缺陷自动识别

(2)医保合规审核(14次)

实践成果:日照市人民医院(DeepSeek-R1)实现全病历质控与医保合规双校验

3、智慧办公系统  

(1)公文自动生成(7次)

应用案例:中山大学孙逸仙纪念医院(DeepSeek-R1:671B)基于模板库和语义分析,自动生成规范性公文(如通知、请示、报告)

四、科研创新类

1、数据挖掘与建模  

(1)病例库深度分析(21次)

科研突破:东南大学附属中大医院(DeepSeek-R1:671B)基于百万级本地病例库训练专属模型,打造临床决策支持系统

2、临床试验支持  

(1)文献检索与分析(9次)

典型应用:中部战区总医院(DeepSeek-R1:70B)高效检索、统计并分析海量医学文献

(2)试验方案生成(1次)

区域创新:华西医院临床试验中心(DeepSeek-R1)临床试验全流程智能服务

3、中医传承创新  

(1)古籍分析与方剂推荐(6次)

特色实践:中国中医科学院望京医院(DeepSeek-R1)中医药专属模型开发(古籍文献整合、病历智能纠错)

(2)智能辨证论治(14次)

技术突破:喀什地区中医医院(DeepSeek-V3 满血版)构建中医大数据诊疗模型,通过Al模拟中医辨证论治思维,为医生提供决策支持

五、特殊场景类

1、跨境医疗服务  

(1)远程救援与病历互译(1次)

区域实践:东兴市人民医院(DeepSeek-R1)跨境医疗救援与远程诊疗协作

(2)多语言支持(2次)

创新案例:爱尔眼科医院(DeepSeek-R1)数字人“爱科”支持多语言交互

2、公卫服务创新  

(1)传染病监测(2次)

典型案例:天津市海河医院(天河·天元、WiNGPT和DeepSeek三位一体的AI模型)传染病监测前置软件的“前置”

(2)流行病预警(1次)

技术应用:湖南省胸科医院(DeepSeek-R1)结核病感染风险预测系统

3、专科深化应用  

(1)甲状腺AI医生(1次)

代表案例:北京中医药大学孙思邈医院(DeepSeek-R1)中西医结合甲状腺专科 AI 医生

(2)口腔种植导航(3次)

技术亮点:绵阳医博口腔(DeepSeek-R1)AI辅助下诊断分析从1小时缩短至10分钟

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### 关于保研面试或考研复试中涉及深度学习的常见问题 #### 深度学习基础知识 在保研面试或考研复试中,深度学习是一个热门领域,通常会考察学生的基础理论知识及其实际应用能力。以下是常见的深度学习相关问题: 1. **什么是神经网络?其基本组成单元是什么?** 神经网络是一种模仿生物神经系统结构和功能的计算模型,由个神经元通过连接权重组合而成。每个神经元接收输入信号并经过激活函数处理后输出[^2]。 2. **解释前向传播与反向传播的过程。** 前向传播是指数据从输入层传递到隐藏层再到输出层的过程;而反向传播则是利用链式法则计算损失函数相对于各参数的梯度,并更新这些参数以最小化误差[^4]。 3. **列举几种常用的优化器,并说明它们的特点。** - SGD (随机梯度下降): 更新速度快但易陷入局部最优解; - Adam: 结合了 Momentum 和 RMSprop 的优势,在大数情况下表现良好; - Adagrad: 自适应调节学习率,适用于稀疏特征场景; - RMSProp: 改进了Adaptive Gradient Algorithm存在的问题,控制自适应学习速率变化幅度较小等问题。 4. **为什么需要使用激活函数?有哪些常用激活函数?** 使用激活函数是为了引入非线性因素使得模型能够更好地拟合复杂模式。一些典型的激活函数包括ReLU(Rectified Linear Unit),Sigmoid以及Tanh等。其中 ReLU 是目前最流行的激活函数之一因为它可以有效缓解梯度消失现象同时保持简单高效运算特性。 5. **过拟合如何定义? 如何解决这个问题?** 过拟合指的是当机器学习模型过度匹配训练样本而导致测试性能较差的现象。可以通过增加正则项(L1/L2范数约束)、Dropout技术或者早停机制等方式防止发生此类情况。 #### 实际应用场景分析 除了上述提到的概念外,考官还可能关注考生能否将所学应用于实践当中: 6. **卷积神经网络(CNNs)主要用途在哪里? 它们是如何工作的?** CNN广泛用于图像识别等领域因为它们具有自动提取空间层次特征的能力。典型架构包含交替排列卷积层(Max Pooling Layers),全连接层(Fully Connected Layer)以及其他组件构成整个框架体系. 7. **循环神经网络(RNNs)/长短时记忆网络(LSTMs)适合哪些任务类型?** RNN特别擅长处理序列型时间维度上的依赖关系比如自然语言处理(NLP). LSTM作为改进版本解决了传统单纯形式下长期记忆丢失难题从而提升了整体效果表现水平. 8. **生成对抗网络(GANs)的工作原理是什么样的呢? 可能存在什么挑战吗?** GAN由两个子模块——生成器(generator)与判别器(discriminator)-相互竞争共同进化直至达到纳什均衡状态为止;然而该方法也面临诸如收敛困难不稳定等诸潜在风险隐患待进一步研究探讨解决方案. 9. **迁移学习的意义在哪方面体现出来? 给出几个例子说明一下吧!** 当目标域仅有少量标注样例可用时借助源域已有的大规模预训练好的权值初始化新项目可显著减少资源消耗加快开发周期降低成本投入产出比高等优点明显可见一斑如ImageNet上获得优秀成绩后再迁移到细粒度分类任务上去等等均属此列范畴之内. ```python import tensorflow as tf from tensorflow.keras import layers, models def create_cnn_model(): model = models.Sequential() # 添加卷积层 model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(128, activation='relu')) # 输出层 model.add(layers.Dense(10, activation='softmax')) return model ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值