【时间空间复杂度】

1.算法效率

1.1. 如何衡量一个算法的好坏

long long Fib(int N)
{
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

如图所示是一段有关于斐波那契数列的代码,虽然代码看起来简洁简单,但这个算法对运算的要求可不少。比起单纯看代码行数,我们以复杂度来衡量算法的好坏。

1.2. 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

1.3.复杂度在面试时的考察

在这里插入图片描述
在这里插入图片描述

2.时间复杂度

2.1.时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
 for (int j = 0; j < N ; ++ j)
 {
 ++count;
 }
}
 
for (int k = 0; k < 2 * N ; ++ k)
{
 ++count;
}
int M = 10;
while (M--)
{
 ++count;
}
printf("%d\n", count);
}

请计算一下Func1中++count语句总共执行了多少次?
答案是 F(N)=N^2+2*N+10

2.2.大O渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

对应关系为:
在这里插入图片描述
归纳成表:
在这里插入图片描述

另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,
所以数组中搜索数据时间复杂度为O(N)

2.3.常见时间复杂度计算举例

实例一:

void Func2(int N)
{
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}

在这里插入图片描述
实例二:

void Func3(int N, int M)
{
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

在这里插入图片描述
实例三:

void Func4(int N)
{
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

在这里插入图片描述

3.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

实例一:

void BubbleSort(int* a, int n)
{
assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

在这里插入图片描述
红色划线处是额外的变量,额外的空间。实例1使用了常数个额外空间,所以空间复杂度为 O(1)。

实例二:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}

实例2动态开辟了N个空间,空间复杂度为 O(N)。

实例三:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
}

在这里插入图片描述
实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)。

总结:在这里插入图片描述
最后O(N^2)可以表示二维数组。

4.常见时间复杂度以及oj练习

4.1.常见时间复杂度

在这里插入图片描述
在这里插入图片描述

4.2. OJ训练

实例一:

在这里插入图片描述

思路一:先排序再依次查找。如果下一个值不等于前一个+1,下一个值就是消失的数字。
时间复杂度取决于排序,qsort-O(NlogN),冒泡-O(N^2)

思路二:先对0~N求和,再依次减去数组中的值,剩下的哪个就是消失的数字。
时间复杂度一般是O(N)在这里插入图片描述>思路三:异或(相同为0,不同为1)>即数组中对应有的部分异或后会被置为0,而运算到最后留下的就是消失的数字。>在这里插入图片描述

实例二:

在这里插入图片描述

思路一
按照题目的要求执行旋转操作。时间复杂度为0(N^2)
在这里插入图片描述
旋转k次
在这里插入图片描述

思路二:
用前人总结好的规律在这里插入图片描述
在这里插入图片描述
运用函数,三度逆置在这里插入图片描述
或者人为来写
在这里插入图片描述

实例三:二分查找

在这里插入图片描述
在这里插入图片描述
所以二分算法时间复杂度就是O(logN)。
PS:二分查找实际上并不常用,一是需要排序;而是数组的结果不方便插入删除。于是我们会使用二叉搜索树,进一步我们使用红黑树,AVL树……

实例四:递归-迭代

在这里插入图片描述
在这里插入图片描述
1+1+1+……时间复杂度为O(n)

在这里插入图片描述
加个循环,就是N+N-1+N-2+……相当于等差数列求和,为O(N^2)

所以递归的时间复杂度就是所有调用次数。

有时将递归改成迭代也是一种降低时间复杂度的方法。以斐波那契数列为例。

这样的时间复杂度为O(N^2)
改成迭代:

long long int Fib(size_t N)
{
long long f1=1;
long long f2=1;
long long f3=0;
for(size_t i=3;i<=N;i++{
	f3=f1+f2;
	f1=f2;
	f2=f3;
	}
	return f3;
}

这样,时间复杂度就从O(N^2)变成O(N)了

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值