电池管理系统(BMS)状态估计方法

本文介绍了常见的动力电池SOC估算方法,如放电法、开路电压法、安时积分法、卡尔曼滤波和神经网络法,强调了卡尔曼滤波和神经网络作为高精度算法的未来发展趋势。同时指出,尽管实验室实验结果有一定的局限性,但这些技术在电动汽车电池整体SOC估算中的应用仍面临挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

常见的估算动力电池SOC的方法有放电法、开路电压法、安时积分法、卡尔曼滤波法、神经网络法

一、SOC估计

放电法: 在某一温度下对电池进行1/3C倍率的恒流放电,直到电池端电压达到最低值(此时SOC=0),此温度和电流下放电容量即为电流与时间的积,SOC值即为放电容量占电池额定容量的比值

开路电压法: SOC处于较高值时,电池的开路电压也比较大。因此可预先通过试验的手段来获取SOC与开路电压两者的对应关系

安时积分法: 电池在一段时间内放出的容量是电流对时间的积分,故测量电池工作状态下的电流值,计算已放出容量,然后根据电池总容量与已放出容量之差即可计算出当前状态下电池的SOC。

卡尔曼滤波法的核心是根据已建立的电池状态模型,利用卡尔曼滤波原理根据电池工作时的电流、电压以及温度等进行状态递推,得到SOC的实时估算值以及估算误差。神经网络法是依据大量的样本数据和神经网络模型,通过大量的数据分析,实时将SOC与输入端数据建立一定的联系

递归贝叶斯滤波,包括卡尔曼滤波(KF)、扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)和粒子滤波(PF),以实现LIB的在线状态估计。电流和终端电压的板载测量是目前阶段实时估计电池状态的最关键的前提。

开路电压+安时积分联用是目前主流,高精度算法(卡尔曼滤波法和神经网络法)是未来发展方向。

二、应用现状

主要在实验平台或仿真工具等较为理想的环境下进行实验,所得结果对实际行驶的电动汽车电池SOC估算指导意义有限。实验对象大部分是单体电池,电池串并联使用后,电荷量、寿命、自放电率等参数都会有差异,所以在应用到电池组整体SOC估算时效果不理想,需考虑电动汽车实际行驶工况的复杂性和多变性。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值