Nature 子刊丨用于锂离子电池退化稳定建模和预后的物理信息神经网络

作者: Fujin Wang, Zhi Zhai, Zhibin Zhao, YiDi ,XuefengChen

单位:西安交通大学

01 摘要

准确的健康状态 (SOH) 估计对于锂离子电池的可靠和安全运行至关重要。然而,由于电池类型和工作条件各不相同,可靠和稳定的电池SOH估计仍然具有挑战性。在本文中,我们提出了一种物理知情神经网络(PINN),用于准确稳定地估计电池SOH。具体而言,我们从经验退化和状态空间方程的角度对影响电池退化的属性进行了建模,并利用神经网络来捕捉电池退化的动态。设计了一种通用特征提取方法,用于在电池充满电之前从短时间内的数据中提取统计特征,使该方法适用于不同的电池类型和充放电协议。此外,我们还生成了一个由 55 个锂-镍-钴-锰-氧化物 (NCM) 电池组成的综合数据集。结合来自不同制造商的其他三个数据集,我们总共使用了 387 个电池和 310,705 个样本来验证我们的方法。平均绝对百分比误差 (MAPE) 为 0.87%。与其他神经网络相比,我们提出的 PINN 在常规实验、小样本实验和转移实验中表现出了显着的性能。这项研究强调了基于物理的机器学习在电池退化建模和 SOH 估计方面的前景。


02 图表简介  

figure 1

图:a 锂离子电池可能具有不同的化学成分(例如,镍钴锰酸锂(NCM)、镍钴铝酸锂(NCA)和磷酸铁锂(LFP)等)。不同的用户有个性化的电池放电策略,导致不同的退化轨迹。b 用于特征提取的选定数据的图示。我们在电池充满电之前从短时间内提取了特征。这些特征被用作拟议的 PINN 的输入来估计 SOH。上图是第 10 个周期的曲线,下图是整个生命周期的所有曲线。电池的老化和充电/放电协议的变化会导致曲线移动。

图2

图:总共有 6 个批次(55 节电池),除第 2 批包含 15 节电池外,所有批次都包含 8 节电池。不同批次的充电/放电协议不同

图3

图:a 第1批8个电池的特征。每个子图的 x 轴为 SOH,y 轴为相应特征的归一化值。每个子图右侧的数字表示特征编号。b 四个数据集中提取的特征与SOH之间的相关热图。数字 1-16 代表 16 个特征,特征的顺序与 (a) 中的一致。

图4

图:a 拟议的PINN在四个数据集上的SOH估计结果。预测和真实 SOH 分布在对角线附近,表明模型表现良好。b 3 个模型(拟议的 PINN (Ours)、多层感知器 (MLP) 和卷积神经网络 (CNN))在四个数据集上的平均绝对误差 (MAE)、平均绝对百分比误差 (MAPE) 和均方根误差 (RMSE) 的分布。每个误差线包含 10 个点(10 个实验),并用平均线和标准差线标记。与其他两种方法相比,本方法的预测误差更小,稳定性更高。源数据以源数据文件的形式提供

图5

图:每个误差线包含 10 个点(10 个实验),并用平均线和标准差线标记。图例中的“1 个电池”表示我们只使用 1 个电池的数据来训练模型。其他的则类似。随着电池数量的增加,三款车型的性能越来越好。但是,我们的方法仍然在其中表现最好。a 第1批的结果。b HUST数据集的结果。源数据以源数据文件的形式提供。

图6

03 参考文献

Wang F, Zhai Z, Zhao Z, et al. Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis[J]. Nature communications, 2024, 15(1): 4332.

小编有话说:本文仅作科研人员学术交流,由于小编才疏学浅,不科学之处欢迎批评。如有其他问题请随时联系小编。欢迎关注点赞,转发,欢迎互设白名单。投稿、荐稿:MechanicsAI@163.com

点击“阅读原文”了解文章详情及PDF下载

点击“在看”,分享内容给小伙伴

<think>好的,用户想了解PINN电池的技术参数、特点应用场景。首先,我需要确定PINN在这里指的是什么。根据提供的引用,特别是引用[1][5],PINN可能是指Physics-Informed Neural Networks(物理信息神经网络)在电池领域的应用,而不是一种具体电池类型。用户可能混淆了技术名称,所以需要先澄清这一点。 接下来,检查用户提供的引用内容。引用[1]提到使用PINN结合LSTM进行锂离子电池的荷电状态估计,引用[5]讨论了PIML(物理信息机器学习)技术的挑战应用前景。这说明PINN是一种结合物理模型机器学习的方法,用于电池状态估计,而非电池本身的技术参数。因此,用户可能误解了术语,需要解释清楚PINN在电池领域的应用,而不是一种电池产品。 然后,分析用户的需求。用户想知道技术参数、特点应用场景。既然PINN是一种方法,需要调整回答的结构,分别说明该方法的技术参数(如模型结构、输入参数)、特点(结合物理数据驱动)以及应用场景(如电池管理系统的状态估计)。 同时,需要引用提供的文献。例如,引用[1]中的PINN+LSTM用于电池SOC估计,引用[2]提到数据驱动模型驱动的优势,引用[4]关于传感器技术,引用[5]讨论挑战应用前景。将这些引用内容整合到回答中,确保每个部分都有文献支持。 还要注意用户提到的系统级指令,比如使用正确的LaTeX格式,生成相关问题。在回答中使用$...$$$...$$格式,例如数学表达式,如电池模型方程。生成的问题需要与PINN在电池中的应用相关,比如优化方法、与传统方法的比较等。 最后,确保回答结构清晰,分点说明技术参数、特点应用场景,每个部分都有对应的引用支持。同时,检查是否符合中文回答的要求,避免技术术语使用不当,保持语言自然流畅。</think>### PINN电池技术解析 PINN(Physics-Informed Neural Networks)并非指具体电池类型,而是**物理信息神经网络**在电池领域的应用技术,其核心是通过融合物理规律与深度学习模型,提升电池状态估计的精度可靠性。以下从技术参数、特点及应用场景三方面分析: --- #### 一、技术参数(基于PINN的电池建模) 1. **模型输入参数** - 物理参数:$V(t)$(端电压)、$I(t)$(电流)、$T(t)$(温度)[^1] - 数据特征:充放电曲线、循环寿命数据、阻抗谱等[^2] - 约束方程:如锂离子扩散方程 $\frac{\partial c}{\partial t} = D \nabla^2 c$ [^3] 2. **模型结构** - 神经网络架构:LSTM(长短期记忆网络)处理时序数据 - 物理约束嵌入方式:通过偏微分方程残差项优化损失函数[^3] --- #### 二、技术特点 1. **物理-数据双驱动** - 结合电化学模型理论推导与实测数据,避免纯数据驱动的过拟合问题 - 示例:在SOC(荷电状态)估计中,将Butler-Volmer方程作为约束 2. **高精度与鲁棒性** - 实验显示SOC估计误差可控制在1%以内,优于传统扩展卡尔曼滤波 - 支持极端工况(如低温、快充)下的状态预测[^5] 3. **多尺度建模能力** - 同时解析电极颗粒微观扩散($\mu m$级)与电池宏观热行为(cm级) --- #### 三、应用场景 1. **动力电池管理系统** - 电动汽车:实时SOC/SOH(健康状态)估计 - 无人机:轻量化电池状态监控 2. **储能系统优化** - 电网级储能:寿命衰减预测与充放电策略优化 - 卫星电源:长期在轨锂电池健康管理(引用文献[1]的航天应用案例) 3. **新型电池研发** - 固态电池:耦合应力场方程分析电极-电解质界面演化[^4] - 传感器融合:结合FBG传感器监测电芯内部应力[^4] ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周yyyyyyyyyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值