基于Yolov5的绝缘子检测

目录

1.数据集绝缘子检测介绍

2.Yolov5介绍

2.1 如何训练


✨✨✨✨✨目标检测数据集✨✨✨✨✨✨

        本专栏提供各种场景的数据集,主要聚焦:工业缺陷检测数据集、小目标数据集、遥感数据集、红外小目标数据集,该专栏的数据集会在多个专栏进行验证,在多个数据集进行验证mAP涨点明显,尤其是小目标、遮挡物精度提升明显的数据集会在该专栏进行数据集上传。数据集开箱即用,已转换成适合yolo训练的格式供直接使用。

🏆🏆🏆目标检测数据集分享: http://t.csdn.cn/bdhTy 🏆🏆🏆

        对应应用场景,不同的应用场景有不同的检测难点以及对应改进方法,本专栏整理汇总领域内的数据集,方便大家下载数据集。

1.数据集绝缘子检测介绍

        随着社会和经济的持续发展,电力系统的投资与建设也日益加速。在电力系统中,输电线路作为电能传输的载体,是最为关键的环节之一。而绝缘子作为输电环节中的重要设备,在支撑固定导线,保障绝缘距离的方面有着重要作用。大多数高压输电线路主要架设在非城市内地区,绝缘子在输电线路中由于数量众多、跨区分布,且长期暴露在空气中,受恶劣自然环境的影响,十分容易发生故障。随着大量输电工程的快速建设,传统依靠人工巡检的模式,已经越来越难以适应高质量运维的要求。随着国网公司智能化要求的提升,无人机技术的快速应用,采取无人机智能化巡视,能够大幅度减少运维人员及时间,提升质量,因此得到快速发展。
        通过无人机搭载相机头云台对输电线路上的绝缘子进行数据采集,挑选出绝缘子上有故障的图片数据,绝缘子数据集大小:1159,一共有2种类型:'insulator','insulator bunch-drop'
 

共有两个类别,分别为'insulator','insulator bunch-drop';

两个类别分布如下:

2.Yolov5介绍

YOLOv5在整个神经网络分为4个部分的改进如下:

  1. Input:数据加载使用了3种数据增强:缩放、色彩空间调整和马赛克增强。
  2. BackBone:结合了很多先进的图像识别领域的内容和算法,包括:CSPNet、Leaky ReLU和Sigmoid 激活函数。
  3. Neck:在BackBone和最后的输出层之间往往会插入一些层,这里就加入了SPP-Net、FPN+PAN结构。
  4. Prediction:输出层的锚框机制和Yolov3相同,主要改进的是训练时的损失函数GIOU Loss,加快了收敛速度。

此外,YOLOv5还增加了自适应锚定框的功能,这样就不用根据不同训练数据调整锚定框的大小和位置了。

YOLOv5在兼顾mAP的同时,有着更短的检测时间,同时YOLOv5s的权重文件大小只有27MB,能够更好的适应嵌入式设备和移动设备,如下:

 weights参数指定了使用的权重文件,根据模型的规模不同设有4个模型:v5s、v5m、v5l、v5x,权重文件的比较如下表:

2.1 如何训练

python train.py  --batch 4 --epochs 100 --data data/insulator.yaml --cfg models/yolov5s.yaml  --weights weights/yolov5s.pt 

各项指标如下:

 

 

 

### Python在电力站视觉应用方面 #### 计算机视觉基础及其在电力行业的应用 计算机视觉是一门研究如何使机器“看”的科学,其主要目标是从图像或者多模态数据中获取“有意义”的信息。对于电力行业而言,计算机视觉技术可以帮助提高设备维护效率、保障人员安全并优化运营成本。例如,在变电站巡检机器人中部署摄像,并利用计算机视觉算法识别异常情况或潜在风险点[^1]。 #### 应用于电力站的具体项目实例 - **无人机巡检输电线路** 使用配备高清摄像机的小型无人飞行器定期巡查高压电线塔架及导线状况。借助深度卷积神经网络(DCNN),可以从大量航拍照片自动检测出诸如绝缘子破损、鸟巢搭建等问题所在位置。 - **智能监控系统构建** 针对发电厂内部环境复杂的特点建立一套完整的视频分析平台。该系统不仅能够实时监测工作人员的行为动作是否合规合法;而且还可以针对特定区域内的物体移动轨迹进行跟踪记录以便事后追溯查询。 - **缺陷诊断辅助工具开发** 利用迁移学习方法训练专门面向电气元件表面瑕疵分类的任务模型。当现场工程师拍摄到疑似有问题的照片上传至云端服务器之后,后台服务端会调用预训练好的ResNet50等架构来判断是否存在裂纹腐蚀等情况发生。 #### 关键技术和常用库支持 为了实现上述功能模块,开发者们往往会采用如下几种主流框架和技术栈组合: - OpenCV:作为最著名的开源计算机视觉库之一,提供了丰富的图像处理函数接口; - TensorFlow/PyTorch:这两个都是当下非常流行的人工智能计算框架,特别适用于构建高效的深度学习流水线; - MediaPipe:谷歌推出的跨平台多媒体管线解决方案,可用于人体姿态估计等多个场景下的高效推理运算; - YOLOv5/v7:YOLO系列的目标检测算法以其速度快精度高的特点著称,非常适合工业级大规模部署需求。 ```python import cv2 from tensorflow.keras.models import load_model import numpy as np def preprocess_image(image_path): img = cv2.imread(image_path) resized_img = cv2.resize(img, (224, 224)) normalized_img = resized_img / 255.0 return np.expand_dims(normalized_img, axis=0) model = load_model('path_to_pretrained_resnet.h5') image_data = preprocess_image('/example.jpg') prediction = model.predict(image_data) print(prediction.argmax()) ```
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值