目录
✨✨✨✨✨目标检测数据集✨✨✨✨✨✨
本专栏提供各种场景的数据集,主要聚焦:工业缺陷检测数据集、小目标数据集、遥感数据集、红外小目标数据集,该专栏的数据集会在多个专栏进行验证,在多个数据集进行验证mAP涨点明显,尤其是小目标、遮挡物精度提升明显的数据集会在该专栏进行数据集上传。数据集开箱即用,已转换成适合yolo训练的格式供直接使用。
🏆🏆🏆目标检测数据集分享: http://t.csdn.cn/bdhTy 🏆🏆🏆
对应应用场景,不同的应用场景有不同的检测难点以及对应改进方法,本专栏整理汇总领域内的数据集,方便大家下载数据集。
1.数据集绝缘子检测介绍
随着社会和经济的持续发展,电力系统的投资与建设也日益加速。在电力系统中,输电线路作为电能传输的载体,是最为关键的环节之一。而绝缘子作为输电环节中的重要设备,在支撑固定导线,保障绝缘距离的方面有着重要作用。大多数高压输电线路主要架设在非城市内地区,绝缘子在输电线路中由于数量众多、跨区分布,且长期暴露在空气中,受恶劣自然环境的影响,十分容易发生故障。随着大量输电工程的快速建设,传统依靠人工巡检的模式,已经越来越难以适应高质量运维的要求。随着国网公司智能化要求的提升,无人机技术的快速应用,采取无人机智能化巡视,能够大幅度减少运维人员及时间,提升质量,因此得到快速发展。
通过无人机搭载相机头云台对输电线路上的绝缘子进行数据采集,挑选出绝缘子上有故障的图片数据,绝缘子数据集大小:1159,一共有2种类型:'insulator','insulator bunch-drop'
共有两个类别,分别为'insulator','insulator bunch-drop';
两个类别分布如下:
2.Yolov5介绍
YOLOv5在整个神经网络分为4个部分的改进如下:
- Input:数据加载使用了3种数据增强:缩放、色彩空间调整和马赛克增强。
- BackBone:结合了很多先进的图像识别领域的内容和算法,包括:CSPNet、Leaky ReLU和Sigmoid 激活函数。
- Neck:在BackBone和最后的输出层之间往往会插入一些层,这里就加入了SPP-Net、FPN+PAN结构。
- Prediction:输出层的锚框机制和Yolov3相同,主要改进的是训练时的损失函数GIOU Loss,加快了收敛速度。
此外,YOLOv5还增加了自适应锚定框的功能,这样就不用根据不同训练数据调整锚定框的大小和位置了。
YOLOv5在兼顾mAP的同时,有着更短的检测时间,同时YOLOv5s的权重文件大小只有27MB,能够更好的适应嵌入式设备和移动设备,如下:
weights参数指定了使用的权重文件,根据模型的规模不同设有4个模型:v5s、v5m、v5l、v5x,权重文件的比较如下表:
2.1 如何训练
python train.py --batch 4 --epochs 100 --data data/insulator.yaml --cfg models/yolov5s.yaml --weights weights/yolov5s.pt
各项指标如下: