YOLOv9改进策略:loss优化 | LRM loss困难样本挖掘,提升难样本、遮挡物、低对比度等检测精度

   💡💡💡本文改进内容:LRM loss困难样本挖掘引入到YOLOv9,性能优于Focal Loss

 💡💡💡 LRM loss应用到能够大幅提升小目标、红外小目标、大幅度提升遮挡物性能,性能如下图所示:

《YOLOv9魔术师专栏》将从以下各个方向进行创新:

原创自研模块多组合点优化注意力机制卷积魔改block&多尺度融合结合

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值