YOLOv9改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题

一、本文介绍

本文记录的是改进YOLOv9的损失函数,将其替换成Slide Loss,并详细说明了优化原因,注意事项等。Slide Loss函数可以有效地解决样本不平衡问题,为困难样本赋予更高的权重,使模型在训练过程中更加关注困难样本。若是在自己的数据集中发现容易样本的数量非常大,而困难样本相对稀疏,可尝试使用Slide Loss来提高模型在处理复杂样本时的性能。


专栏目录:YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv9改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

### YOLOv10分类损失函数解析 #### 分类损失函数概述 YOLOv10引入并优化了几种先进的分类损失函数,旨在提高模型在同场景下的表现。这些损失函数仅增强了模型处理复杂背景的能力,还提升了对小物体检测的效果。 #### Slide Loss Slide Loss通过调整预测类别概率分布的方式,使得模型更加关注难以区分的对象。该方法通过对样本权重进行动态调整,在训练过程中逐步聚焦于难分样本,从而改善整体性能[^1]。 ```python def slide_loss(pred, target): # 计算滑动窗口内的交叉熵损失 loss = F.cross_entropy(pred, target, reduction='none') # 动态调整样本权重 weights = adjust_weights_based_on_difficulty(target) return (loss * weights).mean() ``` #### VariFocal Loss VariFocal Loss是一种针对密集场景设计的新型损失函数,特别适合解决大量目标聚集的情况。此算法能够自适应地改变焦点区域大小,并根据实例密度自动调节惩罚力度,有效解决了传统方法中存在的正负样本平衡问题[^2]。 ```python import torch.nn.functional as F def varifocal_loss(pred, gt_score, beta=2.0, alpha=0.25): pred_sigmoid = pred.sigmoid() pt = (1 - pred_sigmoid) * gt_score + pred_sigmoid * (1 - gt_score) focal_weight = (alpha * gt_score + (1 - alpha) * (1 - gt_score)) * pt.pow(beta) bce_loss = F.binary_cross_entropy_with_logits( pred, gt_score, reduction='none') loss = focal_weight * bce_loss return loss.mean() ``` #### VFLoss FocalLoss 的区别与联系 VFLoss(Variants of Focal Loss)是在经典Focal Loss基础上发展而来的变体之一。两者都致力于缓解极端类别均衡带来的挑战;然而,VariFocal进一步考虑到了局部特征的重要性以及对象间相互作用的影响,因此更适合应用于现代视觉识别任务中。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值