多维随机变量

在进行实验时我们有时需要同时获取多个随机变量。

从二维随机变量开始讨论。

分布函数:

分布函数: F ( X , Y ) = P { X ≤ x , Y ≤ y } F(X,Y)=P\{X \leq x,Y \leq y\} F(X,Y)=P{Xx,Yy}
易知:

  1. F ( ∞ , ∞ ) = 1 F(\infty,\infty)=1 F(,)=1 F ( − ∞ , − ∞ ) = 0 F(-\infty,-\infty)=0 F(,)=0

  2. F(X,Y)右连续

  3. F(X,Y)为不减函数

  4. x 2 > x 1 x_2>x_1 x2>x1 y 2 > y 1 y_2>y_1 y2>y1时:
    F ( x 2 , y 2 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) − F ( x 2 , y 1 ) = P ≥ 0 F(x_2,y_2)-F(x_1,y_2)+F(x_1,y_1)-F(x_2,y_1)=P{} \geq 0 F(x2,y2)F(x1,y2)+F(x1,y1)F(x2,y1)=P0

概率密度

概率密度: f ( x , y ) = ∂ 2 F ( x , y ) ∂ x ∂ y f(x,y)=\frac{\partial^2{F(x,y)}}{\partial x \partial y} f(x,y)=xy2F(x,y)(F(x,y)连续)
易知:

  1. ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) = 1 \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)=1 ++f(x,y)=1
  2. f ( x , y ) ≥ 0 f(x,y)\geq0 f(x,y)0
  3. 设G是平面 x O y xOy xOy的平面则点落入平面G的概率为: P { ( x , y ) ∈ G } = ∫ ∫ G f ( x , y ) d x d y P\{(x,y)∈G\}=\underset{G}{\int\int}f(x,y)dxdy P{(x,y)G}=G∫∫f(x,y)dxdy
  4. F ( X , Y ) = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d v d u F(X,Y)=\int_{-\infty}^x\int_{-\infty}^yf(u,v)dvdu F(X,Y)=xyf(u,v)dvdu

边缘分布:

某些时候我们需要忽略掉某个变量的影响,取另一个变量的分布函数这就是边缘分布

联合分布函数是对两个随机事件的一种描述
对于随机变量X和Y来说
P { X = a } = P { X = a , Y = b } + P { X = a , Y ≠ b } P\{X= a\}=P\{X=a,Y=b \}+P\{X=a,Y \neq b \} P{X=a}=P{X=a,Y=b}+P{X=a,Y=b}
∴ P { X = a } = P { X = a , Y ∈ R } \therefore P\{X= a\}=P\{X=a,Y∈R\} P{X=a}=P{X=a,YR}
∴ P { X ≤ a } = P { X ≤ a , Y < ∞ } \therefore P\{X\leq a\}=P\{X\leq a,Y<\infty\} P{Xa}=P{Xa,Y<}
∴ F X ( x ) = F ( x , ∞ ) \therefore F_X(x)=F(x,\infty) FX(x)=F(x,)

F X ( x ) = F ( x , ∞ ) F_X(x)=F(x,\infty) FX(x)=F(x,)只与x有关
F Y ( y ) = F ( ∞ , y ) F_Y(y)=F(\infty,y) FY(y)=F(,y)只与y有关
边缘概率密度:
f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y f_X(x)=\int_{-\infty}^{\infty}f(x,y)dy fX(x)=f(x,y)dy
f Y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x f_Y(y)=\int_{-\infty}^{\infty}f(x,y)dx fY(y)=f(x,y)dx

条件概率

计算时将 f Y ( y ) = 0 f_Y(y)=0 fY(y)=0的点去掉
F X ∣ Y ( x ∣ y ) = 1 f Y ( y ) ∫ − ∞ x f ( x , y ) d x F_{X|Y}(x|y)=\frac{1}{f_Y(y)}\int_{-\infty}^xf(x,y)dx FXY(xy)=fY(y)1xf(x,y)dx
f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(y)} fXY(xy)=fY(y)f(x,y)

推导过程:
P { X ≤ x ∣ Y = y } = l i m ξ − > 0 P { X ≤ x ∣ y − ξ ≤ Y < y } = l i m ξ − > 0 P { X ≤ x , y − ξ ≤ Y < y } P { y − ξ ≤ Y < y } = l i m ξ − > 0 ∫ − ∞ ∞ ∫ y − ξ y f ( x , y ) d y d x ∫ y − ξ y f Y ( y ) d y = ∫ − ∞ ∞ f ( x , y ) d x f Y ( y ) \begin{aligned} P\{X\leq x|Y=y\} & =\mathop{lim}\limits_{\xi->0}P\{X\leq x|y- \xi \leq Y<y\}\\ & =\mathop{lim}\limits_{\xi->0}\frac{P\{X\leq x,y- \xi \leq Y<y\}}{P\{y- \xi \leq Y<y\}}\\ &=\mathop{lim}\limits_{\xi->0}\frac{\int_{-\infty}^\infty\int_{y-\xi}^{y}f(x,y)dydx}{\int_{y-\xi}^{y}f_Y(y)dy}\\ &=\int_{-\infty}^\infty\frac{f(x,y)dx}{f_Y(y)} \end{aligned} P{XxY=y}=ξ>0limP{XxyξY<y}=ξ>0limP{yξY<y}P{Xx,yξY<y}=ξ>0limyξyfY(y)dyyξyf(x,y)dydx=fY(y)f(x,y)dx
∴ f ( X ∣ Y ) = f ( x , y ) f Y ( y ) \therefore f(X|Y)=\frac{f(x,y)}{f_Y(y)} f(XY)=fY(y)f(x,y)

独立

相互独立:
条件: F ( x , y ) = F ( x ) F ( y ) F(x,y)=F(x)F(y) F(x,y)=F(x)F(y)
f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y)(几乎处处成立)

两个随机变量的函数分布:

以下几个公式证明的前提是XY相互独立

Z=X+Y(卷积公式):

f X + Y ( z ) = ∫ − ∞ ∞ f ( z − y , y ) d y = ∫ − ∞ ∞ f ( x , z − x ) d x f_{X+Y}(z)=\int_{-\infty}^\infty f(z-y,y)dy=\int_{-\infty}^\infty f(x,z-x)dx fX+Y(z)=f(zy,y)dy=f(x,zx)dx
又记为:
f X + Y ( z ) = ∫ − ∞ ∞ f X ( z − y ) f Y ( y ) d y = ∫ − ∞ ∞ f X ( x ) f Y ( z − x ) d x f_{X+Y}(z)=\int_{-\infty}^\infty f_X(z-y)f_Y(y)dy=\int_{-\infty}^\infty f_X(x)f_Y(z-x)dx fX+Y(z)=fX(zy)fY(y)dy=fX(x)fY(zx)dx
证明:
Z = X + Y Z=X+Y Z=X+Y
F Z ( z ) = P { X + Y ≤ z } (可以看作点( x , y )落在 x + y ≤ z 这个区间的概率) = ∫ ∫ x + y ≤ z f ( x , y ) d x d y ( 根据概率密度的性质 3 可得 ) = ∫ − ∞ ∞ [ ∫ − ∞ z − x f ( x , y ) d y ] d x ( 固定 z 和 x 并将 y 换为 u − x ) = ∫ − ∞ ∞ [ ∫ − ∞ z − x f ( x , u − x ) d ( u − x ) ] d x = ∫ − ∞ ∞ [ ∫ − ∞ z f ( x , u − x ) d u ] d x = ∫ − ∞ z [ ∫ − ∞ ∞ f ( x , u − x ) d x ] d u \begin{aligned} F_{Z}(z) &=P\{ X+Y\leq z\}(可以看作点(x,y)落在x+y\leq z这个区间的概率)\\ \qquad \qquad &=\mathop{\int\int}\limits_{x+y\leq z}f(x,y)dxdy(根据概率密度的性质3可得)\\ \qquad \qquad &=\int_{-\infty}^\infty [\int_{-\infty}^{z-x} f(x,y)dy]dx(固定z和x并将y换为u-x)\\ \qquad \qquad&=\int_{-\infty}^\infty [\int_{-\infty}^{z-x} f(x,u-x)d(u-x)]dx\\ \qquad \qquad&=\int_{-\infty}^\infty [\int_{-\infty}^z f(x,u-x)du]dx\\ \qquad \qquad&=\int_{-\infty}^z[\int_{-\infty}^\infty f(x,u-x)dx]du \end{aligned} FZ(z)=P{X+Yz}(可以看作点(xy)落在x+yz这个区间的概率)=x+yz∫∫f(x,y)dxdy(根据概率密度的性质3可得)=[zxf(x,y)dy]dx(固定zx并将y换为ux)=[zxf(x,ux)d(ux)]dx=[zf(x,ux)du]dx=z[f(x,ux)dx]du
∵ F Z ( Z ) = ∫ − ∞ z f Z ( z ) \because F_Z(Z)=\int_{-\infty}^zf_Z(z) FZ(Z)=zfZ(z)
∴ F X + Y ( z ) = ∫ − ∞ ∞ f ( x , z − x ) d x \therefore F_{X+Y}(z)=\int_{-\infty}^\infty f(x,z-x)dx FX+Y(z)=f(x,zx)dx

Z = Y X Z=\frac{Y}{X} Z=XY

P { y / x ≤ Z } P\{y/x \leq Z\} P{y/xZ}的区域是:

P { y / x ≤ z } = ∫ − ∞ 0 ∫ z x ∞ f ( x , y ) d y d x + ∫ 0 ∞ ∫ − ∞ z x f ( x , y ) d y d x = ∫ − ∞ 0 ∫ z x ∞ f ( x , u x ) d ( u x ) d x + ∫ 0 ∞ ∫ − ∞ z x f ( x , u x ) d ( u x ) d x = ∫ − ∞ 0 ∫ z ∞ x f ( x , u x ) d u d x + ∫ 0 ∞ ∫ − ∞ z x f ( x , u x ) d u d x = ∫ − ∞ 0 ∫ − ∞ z − x f ( x , u x ) d u d x + ∫ 0 ∞ ∫ − ∞ z x f ( x , u x ) d u d x ] = ∫ − ∞ ∞ ∫ − ∞ z ∣ x ∣ f ( x , u x ) d u d x = ∫ − ∞ z [ ∫ − ∞ ∞ ∣ x ∣ f ( x , u x ) d x ] d u \begin{aligned} P\{y/x \le z\}&=\int_{-\infty}^0\int_{zx}^\infty f(x,y)dydx+\int_0^\infty\int_{-\infty}^{zx} f(x,y)dydx\\ &=\int_{-\infty}^0\int_{zx}^\infty f(x,ux)d(ux)dx+\int_0^\infty\int_{-\infty}^{zx} f(x,ux)d(ux)dx\\ &=\int_{-\infty}^0\int_z^\infty xf(x,ux)dudx+\int_0^\infty\int_{-\infty}^z xf(x,ux)dudx\\ &=\int_{-\infty}^0\int_{-\infty}^z-xf(x,ux)dudx+\int_0^\infty\int_{-\infty}^z xf(x,ux)dudx]\\ &=\int_{-\infty}^\infty\int_{-\infty}^z|x|f(x,ux)dudx\\ &=\int_{-\infty}^z[\int_{-\infty}^\infty|x|f(x,ux)dx]du \end{aligned}\\ P{y/xz}=0zxf(x,y)dydx+0zxf(x,y)dydx=0zxf(x,ux)d(ux)dx+0zxf(x,ux)d(ux)dx=0zxf(x,ux)dudx+0zxf(x,ux)dudx=0zxf(x,ux)dudx+0zxf(x,ux)dudx]=zxf(x,ux)dudx=z[xf(x,ux)dx]du

f Y / X ( z ) = ∫ − ∞ ∞ ∣ x ∣ f ( x , x z ) d x f_{Y/X}(z)=\int_{-\infty}^\infty|x|f(x,xz)dx fY/X(z)=xf(x,xz)dx

Z=XY

P { X Y ≤ z } = ∫ 0 ∞ ∫ − ∞ z / x f ( x , y ) d y d x + ∫ − ∞ 0 ∫ z / x ∞ f ( x , y ) d y d x = ∫ 0 ∞ ∫ − ∞ z / x f ( x , u / x ) d ( u / x ) d x + ∫ − ∞ 0 ∫ z / x ∞ f ( x , u / x ) d ( u / x ) d x = ∫ 0 ∞ ∫ − ∞ z 1 x f ( x , u / x ) d u d x + ∫ − ∞ 0 ∫ z / x ∞ 1 x f ( x , u / x ) d u d x = ∫ − ∞ z ∫ − ∞ ∞ 1 ∣ x ∣ f ( x , u / x ) d x d u \begin{aligned} P\{XY\leq z\}&=\int_0^\infty\int_{-\infty}^{z/x}f(x,y)dydx + \int_{-\infty}^0 \int_{z/x}^\infty f(x,y)dydx \\ &=\int_0^\infty \int_{-\infty}^{z/x}f(x,u/x)d(u/x)dx+\int_{-\infty}^0 \int_{z/x}^\infty f(x,u/x)d(u/x)dx\\ &=\int_0^\infty \int_{-\infty}^z \frac{1}{x} f(x,u/x)dudx+\int_{-\infty}^0 \int_{z/x}^\infty \frac{1}{x} f(x,u/x)dudx \\ &=\int_{-\infty}^z\int_{-\infty}^\infty \frac{1}{|x|}f(x,u/x)dxdu \end{aligned} P{XYz}=0z/xf(x,y)dydx+0z/xf(x,y)dydx=0z/xf(x,u/x)d(u/x)dx+0z/xf(x,u/x)d(u/x)dx=0zx1f(x,u/x)dudx+0z/xx1f(x,u/x)dudx=zx1f(x,u/x)dxdu

∴ f X Y ( z ) = ∫ − ∞ ∞ 1 ∣ x ∣ f ( x , z / x ) d z \therefore f_{XY}(z)=\int_{-\infty}^\infty\frac{1}{|x|}f(x,z/x)dz fXY(z)=x1f(x,z/x)dz

Z=min{X,Y}

条件: N = m i n { X , Y } N=min\{X,Y\} N=min{X,Y}
F m i n ( z ) = P { N < z } = 1 − P {   N ≥ z } = 1 − P { X ≥ z , Y ≥ z } = 1 − P { X ≥ z } P { Y ≥ z } = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] \begin{aligned} F_{min}(z)&=P\{N<z\}\\ &=1-P\{\ N\ge z\}\\ &=1-P\{X\ge z,Y\ge z\}\\ &=1-P\{X\ge z\}P\{Y\ge z\}\\ &=1-[1-F_X(z)][1-F_Y(z)] \end{aligned} Fmin(z)=P{N<z}=1P{ Nz}=1P{Xz,Yz}=1P{Xz}P{Yz}=1[1FX(z)][1FY(z)]

Z=max{X,Y}

条件: N = m a x { X , Y } N=max\{X,Y\} N=max{X,Y}
F m a x ( z ) = P { z ≥ N } = P { X ≤ z , Y ≤ z } = F X ( z ) F Y ( z ) \begin{aligned} F_{max}(z)&=P\{z \ge N\}\\ &=P\{X \leq z,Y \leq z\}\\ &=F_X(z)F_Y(z) \end{aligned} Fmax(z)=P{zN}=P{Xz,Yz}=FX(z)FY(z)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值