3.4多维随机变量的特征数

类似于一维随机变量的特征数,多维随机变量也有特征数,除了各个分量的期望、方差、标准差以外,还有两个随机变量间的关联程度,即协方差与相关系数,这是一种反映两个随机变量相依关系的特征数,需要特别注意。

1 多维随机变量函数的数学期望

为了简单起见,我们用二维随机变量叙述此定理,而对n维随机变量的结论是类似的。

定理3.4.1 若二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布用联合分布列 P ( X = x i , Y = y i ) P(X=x_i,Y=y_i) P(X=xi,Y=yi)或用联合密度函数 p ( x , y ) p(x,y) p(x,y)表示,则 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)的数学期望为:
在这里插入图片描述
还要指出,在连续场合(离散场合也类似)有:

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2 数学期望与方差的运算性质

性质 3.4.1 ( X , Y ) (X,Y) (X,Y)是二维随机变量,则有:

E ( X , Y ) = E ( X ) + E ( Y ) ( 3.4.2 ) E(X,Y)=E(X)+E(Y)\quad(3.4.2) E(X,Y)=E(X)+E(Y)(3.4.2)

在这里插入图片描述
性质 3.4.2 若随机变量 X X X Y Y Y相互独立,则有:

E ( X Y ) = E ( X ) E ( Y ) ( 3.4.4 ) E(XY)=E(X)E(Y)\quad\quad(3.4.4) E(XY)=E(X)E(Y)(3.4.4)

待补充 188

证明:设定 ( X , Y ) (X,Y) (X,Y)为连续随机变量(对离散随机变量可类似证明)其联
在这里插入图片描述

性质 3.4.3 若随机变量 X X X Y Y Y相互独立,则有:

V a r ( X ± Y ) = V a r ( X ) + V a r ( Y ) Var(X\pm Y)=Var(X)+Var(Y) Var(X±Y)=Var(X)+Var(Y)

在这里插入图片描述
这个性质表明:独立变量代数和的方差等于各方差之和。

这个性质可推广到n维随机变量场合,即若 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn相互独立,则有:

在这里插入图片描述
待补充 188

3 协方差

二维联合分布中除含有各分量的边际分布外,还含有两个分量间相互关联的信息。描述这种相互关联程度的一个特征数就是协方差,它的定义如下:

定义3.4.1 ( X , Y ) (X,Y) (X,Y)是一个二维随机变量,若 E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] E[(X-E(X))(Y-E(Y))] E[(XE(X))(YE(Y))]存在,则称此数学期望为 X X X Y Y Y的协方差,或称 X X X Y Y Y的相关(中心)矩,并记为:

C o v ( X , Y ) = E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] Cov(X,Y)=E[(X-E(X))(Y-E(Y))] Cov(X,Y)=E[(XE(X))(YE(Y))]

特别有 C o v ( X , X ) = V a r ( X ) Cov(X,X)=Var(X) Cov(X,X)=Var(X)

协方差可正可负,也可以为零,其具体表现如下:

  • C o v ( X , Y ) > 0 Cov(X,Y)>0 Cov(X,Y)>0时,称 X X X Y Y Y正相关,这时两个偏差 ( X − E ( X ) ) (X-E(X)) (XE(X)) ( Y − E ( Y ) ) (Y-E(Y)) (YE(Y))有同时增加或者同时减少的倾向。由于 E ( X ) E(X) E(X) E ( Y ) E(Y) E(Y)都是常数,故等价于 X X X Y Y Y有同时增加或同时减少的倾向,这就是正相关的含义。
  • C o v ( X , Y ) < 0 Cov(X,Y)<0 Cov(X,Y)<0时,称 X X X Y Y Y负相关,这时有 X X X增加而 Y Y Y减少的倾向,或有 Y Y Y增加而 X X X减少的倾向,这就是负相关的含义。
  • C o v ( X , Y ) < 0 Cov(X,Y)<0 Cov(X,Y)<0时,称 X X X Y Y Y不相关。这时可能由两类情况导致:一类是 X X X Y Y Y的取值毫无关联(见性质3.4.5),另一类是 X X X Y Y Y之间存有某种非线性关系(见例3.4.6)。

下面的性质在协方差的计算中是很有用的:

性质3.4.4 C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY)-E(X)E(Y) Cov(X,Y)=E(XY)E(X)E(Y)

在这里插入图片描述

下面的性质表明:“不相关”是比“独立”更弱的一个概念。

在这里插入图片描述
在这里插入图片描述
协方差概念的引入可以完善随机变量和的方差计算,如下面的性质:

性质3.4.6 对任意的二维随机变量 ( X , Y ) (X,Y) (X,Y),有:

V a r ( X ± Y ) = V a r ( X ) + V a r ( Y ) + ± 2 C o v ( X , Y ) ( 3.4.8 ) Var(X\pm Y)=Var(X)+Var(Y)+\pm2Cov(X,Y)\quad(3.4.8) Var(X±Y)=Var(X)+Var(Y)+±2Cov(X,Y)(3.4.8)

在这里插入图片描述
这个性质表明:在X与Y相关的场合,和的方差不等于方差的和。X与Y的正相加会增加和的方差,负相关会减少和的方差,而在X与Y不相关的场合,和的方差等于方差的和。

性质3.4.6还可以推广到更多个随机变量场合,即对任意n个随机变量 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn,有:
在这里插入图片描述
关于协方差的计算,还有下面四条有用的性质。

在这里插入图片描述
在这里插入图片描述
待补充 192

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值