目录
很多人学了很久还没“入门”,很多人在掌握了最少必要知识后就迅速“入门”。
不同于教材的枯燥严谨,本文章旨在帮助研友快速接触考研数学,进入备考状态,基于考研内容进行学习。一些定义可能是出于对知识的应用,以做题应试为目的,而非课本准确定义。所以,对于零基础、期末备考以及考研新手同学非常友好!希望能成为大家做题的指导书。
下面开始讲知识点5 极限四则运算,想要看知识点1 极限定型 内容的同学,请移步:
想要看知识点2 等价无穷小代换(无穷小量) 内容的同学,请移步:
想要看知识点3 利用泰勒公式求极限 内容的同学,请移步:
想要看知识点4 洛必达法则 内容的同学,请移步:
一、极限四则运算
1.极限的四则运算内容
把加减乘除在一起的函数极限拆成多个极限加减乘除,拆的条件是极限都存在才可以拆
举两个例子看一下
2.四则运算重要性质
看一下例题就明白什么意思了:
解答如下:
二、由四则运算重要性质推出的大招方法
1.大招1 加减法中看到存在项就可拆出计算
加减法中看到存在项,无需判断下一项,直接拆。有想知道为什么的同学,可以看下面的图片解释,笔者水平有限,可能没解释清楚。但总的来说,想要做题,知道规则就行,记住结论就行。下面还有例题,更加直观。
例题如下:
再看两个例子,有一个是往年真题(很简单)
解答如下:
拓展:
2.大招2 非零因子,乘法中非零因子项可以先算
简洁质朴的结论:
看个例子就什么都明白了:
三、最后例题应用
练习一下两个大招
解答如下:
(函数极限完)