【2023最新版】Win11: WSL(Ubuntu22.04)使用GPU 加速教程(通过Anaconda搭建深度学习环境)

目录

一、准备工作

1. 安装WSL2(适用于 Linux 的 Windows 子系统)

2. WSL使用GPU 加速简介——来源NVIDIA官网

二、安装 NVIDIA 驱动程序以支持 GPU

1. 系统已安装GetForce Experience

2. NVIDIA官网下载驱动

三、在 WSL2上使用Anaconda搭建深度学习

0. 前提条件

(a). WSL安装Anaconda、换源

(b). 配置环境方法(可跳过)

1. 创建虚拟环境

2. 激活虚拟环境

3. 选择适用于GPU的深度学习框架

4. 安装tensorflow-gpu2.3.0

(a). 下载tensorflow-gpu2.3.0版本

(b). 根据tensorflow-gpu下载相应的cudnn7.6.5版本

(c). 检验

五、WSL设置TensorFlow-DirectML

1. 创建虚拟环境

2. 激活虚拟环境

3. 安装机器学习框架


一、准备工作

1. 安装WSL2(适用于 Linux 的 Windows 子系统)

Windows11安装Linux子系统(Ubuntu22.04LTS)+安装ROS_QomolangmaH的博客-CSDN博客https://blog.csdn.net/m0_63834988/article/details/128672234?spm=1001.2014.3001.5501

2. WSL使用GPU 加速简介——来源NVIDIA官网

        通常,在 Linux 和 Windows 环境中工作的开发人员具有非常具有破坏性的工作流程。他们要么必须:

  • 在 Linux 和 Windows 上使用不同的系统,或者

  • 双启动,即在系统上相同或不同硬盘上的单独分区中安装 Linux 和 Windows,然后启动到所选操作系统。

        在这两种情况下,开发人员都必须停止所有工作,然后切换系统或重新启动。此外,这在历史上限制了跨两个主要生态系统的无缝、集成良好的工具和软件系统的开发。

        WSL 使用户能够在两个环境中无缝过渡,而无需资源密集型传统虚拟机,并提高生产力和使用工具进行开发并集成其工作流。更重要的是,WSL 2使迄今为止只能在Linux上使用的应用程序在Windows上可用。对 GPU 的 WSL 2 支持允许这些应用程序从 GPU 加速计算中受益,并扩展了可在 WSL 2 上开发的应用程序领域。

        借助 NVIDIA CUDA 对 WSL 2 的支持,开发人员可以通过 WSL 利用 NVIDIA GPU 加速计算技术在 Windows 上进行数据科学、机器学习和推理。GPU 加速还有助于降低在接近接近本机的类似 WSL 的环境中运行应用程序的性能开销,因为它能够以更少的 CPU 干预在 GPU 上管道更多的并行工作。

二、安装 NVIDIA 驱动程序以支持 GPU

        在系统上安装 NVIDIA GeForce Game Ready 或 NVIDIA RTX Quadro Windows 11 

注意:

这是您要安装的唯一驱动程序。不要在 WSL 中安装任何 Linux 显示驱动程序

1. 系统已安装GetForce Experience

  • 搜索GetForce Experience

  • 注册、登录

  • 查看驱动

 如图,NVIDIA GeForce Game Ready驱动已存在(可以选择下载更新)

2. NVIDIA官网下载驱动

官方驱动 | NVIDIAhttps://www.nvidia.cn/Download/index.aspx?lang=cn

  • 勾选设备信息

  • 下载

        注:安装成功后需要重启设备


三、在 WSL2上使用Anaconda搭建深度学习

0. 前提条件

(a). WSL安装Anaconda、换源

参照前文:

【2023最新版】Windows11:WSL(Ubuntu22.04)安装Anaconda(换源、各种报错及解决方案)+连接Pycharm进行远程开发_QomolangmaH的博客-CSDN博客https://blog.csdn.net/m0_63834988/article/details/131867701?spm=1001.2014.3001.5502

(b). 配置环境方法(可跳过)

参照前文:

Anaconda搭建深度学习环境py 3.7:tensorflow-gpu2.3.0、pytorch1.12.1_gpu版本;(使用conda下载cuda和cudnn);配置环境经验总结_QomolangmaH的博客-CSDN博客https://blog.csdn.net/m0_63834988/article/details/128841527?spm=1001.2014.3001.5502(一次环境配置过程记录,包括遇到的各种坑,仅供参考)

1. 创建虚拟环境

 conda create -n gpu python=3.7

2. 激活虚拟环境

conda activate gpu

3. 选择适用于GPU的深度学习框架

  • 对于TensorFlow:
    conda install tensorflow-gpu
  • 对于PyTorch:
    conda install pytorch torchvision torchaudio cudatoolkit=<your_cuda_version> -c pytorch

                具体版本请参照官网

Previous PyTorch Versions | PyTorchhttps://pytorch.org/get-started/previous-versions/

下面将以tensorflow-gpu为例   

4. 安装tensorflow-gpu2.3.0

(a). 下载tensorflow-gpu2.3.0版本

pip install tensorflow-gpu==2.3.0

(b). 根据tensorflow-gpu下载相应的cudnn7.6.5版本

使用conda命令会同时下载cudnn+cudatoolkit!!!

conda install cudnn==7.6.5

(c). 检验

import tensorflow as tf


print('GPU', tf.config.list_physical_devices('GPU'))
a = tf.constant(3.)
print(a * a)

五、WSL设置TensorFlow-DirectML

1. 创建虚拟环境

conda create -n directml python=3.6 

2. 激活虚拟环境

conda activate directml

3. 安装机器学习框架

  • 对于TensorFlow:
pip install tensorflow-directml


 

<think>好的,现在我要回答用户的问题:“wsl可以调用gpu吗?”首先,我需要回顾一下之前关于WSL的介绍,确保自己理解WSL的基本概念和功能。之前的对话中已经解释了WSLWindows Subsystem for Linux,允许在Windows上运行Linux二进制文件,并且提到了WSL1和WSL2的区别。 用户现在问的是是否可以使用GPU,这个问题可能涉及到硬件加速深度学习、图形处理等方面。首先,我需要确认WSL是否支持GPU调用。根据我之前的知识,微软在近年的更新中确实为WSL增加了GPU支持,特别是对于WSL2。不过,可能需要特定的版本和驱动程序。 接下来,我需要考虑不同版本的WSLWSL1和WSL2)在GPU支持上的差异。WSL1通过系统调用转译,而WSL2基于虚拟化技术,运行完整的Linux内核。通常来说,虚拟化环境WSL2更容易支持硬件加速,但需要宿主操作系统和虚拟化层的支持。 然后,我需要查阅相关信息,确认具体的支持情况。比如,微软在2020年宣布了WSL2GPU的支持,允许在WSL中运行CUDA和DirectML等工作负载。这需要特定的Windows版本(如Windows 10 21H1或更高版本)、相应的GPU驱动程序(NVIDIA、AMD或Intel),以及安装WSL2GPU驱动包。 此外,还需要考虑不同GPU厂商的支持情况。比如,NVIDIA提供了适用于WSL2的CUDA工具包,用户需要安装特定的驱动程序。AMD和Intel也有各自的解决方案,但可能支持程度不同。 另外,用户可能需要了解如何在WSL中配置GPU支持,比如安装必要的驱动程序和库,确保Windows宿主机的驱动程序是最新的,以及如何验证GPU是否被正确识别和使用。 还需要注意一些限制,例如并非所有GPU功能都可能在WSL中完全支持,或者性能可能不如原生Linux系统。同时,不同应用场景(如机器学习训练、图形渲染)的具体需求和配置步骤也需要简要说明。 最后,总结回答时要明确WSL2支持GPU加速,但需要满足特定条件,并提供安装和验证的基本步骤,同时指出可能的限制。</think>### 分步解释:WSL 能否调用 GPU? **1. 核心结论** **可以**,但需满足以下条件: - 使用 **WSL2**(WSL1 不支持 GPU 加速)。 - Windows 系统版本为 **21H1(Build 19043)或更高**。 - 安装 **GPU 厂商提供的 WSL 专用驱动**(如 NVIDIA、AMD 或 Intel)。 --- **2. 支持场景** - **深度学习/CUDA**:在 WSL2 中运行 TensorFlow、PyTorch 等框架,直接调用 NVIDIA GPU。 - **图形渲染**:通过 OpenCL/Vulkan 等 API 使用 GPU 加速。 - **科学计**:GPU 加速的数值模拟或数据处理任务。 --- **3. 配置步骤(以 NVIDIA GPU 为例)** 1. **更新 Windows 系统**: - 确保 Windows 版本 ≥ 21H1(设置 → 系统 → 关于 → Windows 规格)。 2. **安装 Windows 端 GPU 驱动**: - 下载 NVIDIA **Windows 版驱动**(版本 ≥ 470.14),并选择“**WSL 驱动组件**”。 3. **在 WSL2 中安装 CUDA 工具包**: ```bash # 添加 NVIDIA CUDA 仓库 wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600 sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/7fa2af80.pub sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/ /" sudo apt-get update sudo apt-get install cuda-toolkit ``` 4. **验证 GPU 可用性**: ```bash nvidia-smi # 查看 GPU 状态(类似 Windows 端的输出) python -c "import torch; print(torch.cuda.is_available())" # 输出应为 True ``` --- **4. 其他 GPU 厂商支持** - **AMD**:需安装 [AMD GPU 驱动](https://www.amd.com/en/support)(版本 ≥ 21.30.23),并配置 ROCm 工具包。 - **Intel**:需安装 [Intel WSL 驱动](https://www.intel.com/content/www/us/en/download/19344/windows-subsystem-for-linux-intel-graphics-driver.html),支持 OpenCL 加速。 --- **5. 限制与注意事项** - **仅限 WSL2**:WSL1 无 GPU 支持。 - **性能损耗**:GPU 虚拟化可能带来约 5%~10% 的性能损失(对比原生 Linux)。 - **功能完整性**:部分高级功能(如多 GPU 直通)可能受限。 --- ### 总结 WSL2 可通过专用驱动和工具包调用 GPU,适用于深度学习、科学计等场景,但需严格遵循系统版本和驱动安装要求。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QomolangmaH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值