改变颜色空间
改变颜色空间
使用cv函数 cvtColor(input_image, flag),其中flag决定转换的类型
下面是一些常用flag:
- cv2.COLOR_BGR2GRAY:将BGR图像转换为灰度图像。
- cv2.COLOR_GRAY2BGR:将灰度图像转换为BGR图像。
- cv2.COLOR_BGR2RGB:将BGR图像转换为RGB图像。
- cv2.COLOR_RGB2BGR:将RGB图像转换为BGR图像。
- cv2.COLOR_BGR2HSV:将BGR图像转换为HSV图像。
- cv2.COLOR_HSV2BGR:将HSV图像转换为BGR图像。
认识HSV图像:
HSV是一种常用的颜色空间,它表示色调(Hue)、饱和度(Saturation)和明度(Value)。
色调(Hue)表示颜色的类型或种类,如红色、蓝色、绿色等。它的取值范围是0到360度,其中0和360度对应的是红色。
饱和度(Saturation)表示颜色的纯度或浓度,是指颜色相对于灰色的强度。取值范围是0到1,0代表完全无色彩,1代表最大饱和度。
明度(Value)表示颜色的亮度或明暗程度。取值范围也是0到1,0代表最暗,1代表最亮。
HSV颜色空间与常见的RGB颜色空间不同,它的优点在于更符合人类对颜色的感知方式,而不仅仅是简单地使用红绿蓝三原色的组合。在图像处理和计算机视觉中,HSV颜色空间常用于颜色分割、颜色识别和图像处理等任务。
对象追踪
在HSV中比在BGR颜色空间中更容易表示颜色,我们可以使用它来提取一个有颜色的对象。
方法如下:
- 取视频的每一帧
- 转换从BGR到HSV颜色空间
- 我们对HSV图像设置蓝色范围的阈值
- 现在单独提取蓝色对象,我们可以对图像做任何我们想做的事情。
import cv2 as cv
import numpy as np
cap = cv.VideoCapture(0)
while True:
# 读取帧
_, frame = cap.read()
# 转换颜色空间 BGR 到 HSV
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
# 定义HSV中蓝色的范围
lower_blue = np.array([110, 50, 50])
upper_blue = np.array([130, 255, 255])
# 设置HSV的阈值使得只取蓝色
mask = cv.inRange(hsv, lower_blue, upper_blue)
# 将掩膜和图像逐像素相加
res = cv.bitwise_and(frame, frame, mask=mask)
cv.imshow('frame', frame)
cv.imshow('mask', mask)
cv.imshow('res', res)
k = cv.waitKey(5) & 0xFF
if k == 27:
break
cv.destroyAllWindows()
代码逻辑:
- 创建一个VideoCapture对象,打开摄像头(通常为0)。
- 进入循环,读取每一帧图像。
- 将图像从BGR颜色空间转换为HSV颜色空间。
- 定义要检测的蓝色范围,通过设置上限和下限来确定。
- 根据蓝色范围创建掩膜,将在此范围内的像素设为白色(255),其他像素设为黑色(0)。
- 使用位运算将原始图像与掩膜相乘,以获取只包含蓝色物体的图像。
- 在窗口中显示原始图像、掩膜和结果图像。
如何找到要追踪的HSV值?
要找到要追踪的HSV值,可以按照以下步骤进行:
- 打开你要追踪的图像或视频,并找到包含目标颜色的物体。
- 使用图像处理软件(例如Photoshop、GIMP等)打开该图像。
- 使用选取工具(如吸管工具)在图像上点击目标颜色的区域,以获取其RGB值。
- 将RGB值转换为HSV值。可以使用在线转换工具或编程方式来实现这一点。
在Python中,可以使用OpenCV库的cv.cvtColor()函数将RGB值转换为HSV值。例如:
import cv2 as cv
import numpy as np
color_rgb = np.uint8([[[r, g, b]]]) # 将RGB值转换为numpy数组形式
color_hsv = cv.cvtColor(color_rgb, cv.COLOR_RGB2HSV) # 转换为HSV值
print(color_hsv)
运行这段代码时,将替换掉r、g和b分别为你在图像处理软件中获取的RGB值。输出结果中的数值就是对应的HSV值。
- 获取到的HSV值就是你要追踪的颜色范围的下限和上限。根据追踪要求的精度不同,你可以对得到的HSV值进行微调,扩大或缩小颜色范围。
记住,不同光照条件下的颜色可能会有所不同,因此建议在实际应用中进行一些调整和测试,以确保追踪效果最佳。