RNN神经网络

本文详细介绍了循环神经网络(RNN)的概念及其在处理时间序列数据中的应用,如文本分析。RNN通过隐藏层的状态传递实现序列信息的处理。网络模型包括输入、隐藏和输出层,以及权重矩阵。反向传播用于计算损失函数的梯度。然而,RNN存在梯度消失问题,导致处理长序列时捕捉长期依赖关系的能力受限。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言


一、RNN概念及适用情形

递归神经网络(Recurrent Neural Network, RNN)是一种可以专门用来处理时间序列数据的模型。它可以关注到时间连续这一特性,从而从数据中提取相应的信息。

典型的时序数据像:股价,天气,文本。对于文本而言,每个字符都有前后顺序,如果顺序不对,那么意义就不一样甚至不对了。这里要注意的是,文本数据是离散化的。

在这里插入图片描述

二、RNN模型

1.网络模型

RNN需要做的是前后关系联系在一起。
看一个简单的循环神经网络图
在这里插入图片描述

x是一个向量,它表示输入层的值(这里面没有画出来表示神经元节点的圆圈);s是一个向量,它表示隐藏层的值(这里隐藏层面画了一个节点,你也可以想象这一层其实是多个节点,节点数与向量s的维度相同);

U是输入层到隐藏层的权重矩阵,o也是一个向量,它表示输出层的值;V是隐藏层到输出层的权重矩阵。

那么,现在我们来看看W是什么。循环神经网络的隐藏层的值s不仅仅取决于当前这次的输入x,还取决于上一次隐藏层的值s。权重矩阵 W就是隐藏层上一次的值作为这一次的输入的权重。

把它按照时间线展开
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
当前时刻t的隐藏状态S t ,不仅仅取决于当前的输入X t , 还取决于前一个时刻的隐藏状态值S t − 1

f()为激活函数。

Softmax 是一个数学函数,用于对 0 和 1 之间的值进行归一化。

在这里插入图片描述
在这里插入图片描述

2.反向传播

我简单的理解就是求微分,对网络中所有权重计算损失函数的梯度。

我用一个例子来帮助理解
在这里插入图片描述
在这里插入图片描述

三、缺点

序列太长,容易梯度消失,参数只能捕捉局部关系,没法在捕捉序列间长期依赖关系。

用例子来说明

在这里插入图片描述

总结

以上就是对RNN神经网络的学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值