深度学习学习笔记(三)

Mini-Batch

Mini-Batch(小批量) 是深度学习和机器学习中训练模型的一种方式。它结合了 批量梯度下降(Batch Gradient Descent)随机梯度下降(Stochastic Gradient Descent,SGD) 的优点,同时避免了它们的缺点。下面是详细解释:


1. 什么是 Mini-Batch?

  • Mini-Batch 指的是将训练数据集分成多个小批量(mini-batches),然后每次训练模型时,使用一个小批量的数据进行前向传播、计算损失和梯度更新。
  • 具体来说:
    • 假设训练集有 NN 个样本,我们将它分成多个小批量,每个小批量包含 MM 个样本,其中 M<NM < N。
    • 每次训练模型时,选择一个小批量的数据进行训练,而不是使用整个数据集或单个样本。

2. Mini-Batch 的工作流程

训练过程中,Mini-Batch 的步骤如下:

  1. 将整个训练集分成若干个小批量,每个批量包含 MM 个样本。
  2. 在每个小批量上执行一次前向传播、计算损失、反向传播和参数更新。
  3. 遍历所有小批量后,完成一个 epoch(即遍历完所有样本一次)。
  4. 重复上述步骤,直到达到指定的训练轮数或模型的性能收敛。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GFDJN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值