弱大数定理的意义与证明

弱大数定理的意义与证明


物理意义

大数定理是由概率的统计定义“频率收敛于概率”引申而来,它“说明”了一些随机事件的均值的长期稳定性。为了描述这一点,我们把频率通过一些随机变量的和表示出来。设做了 n n n次独立实验,每次观察某事件 A A A是否发生 ,则在这 n n n次实验中事件 A A A一共出现了 X 1 + ⋅ ⋅ ⋅ + X n X_1+···+X_n X1++Xn次,而频率为 p n = ( X 1 + ⋅ ⋅ ⋅ + X n ) / n = X ‾ n (1) p_n=(X_1+···+X_n)/n=\overline{X}_n \tag{1} pn=(X1++Xn)/n=Xn(1) P ( A ) = p P(A)=p P(A)=p,则“频率趋于概率”表示在某种意义上,当 n n n很大时 p n p_n pn接近 p p p。但 p p p就是 X i X_i Xi的期望值,故也可以写成: n n n很大时 X ‾ n \overline{X}_n Xn接近与 X i X_i Xi的期望值
按上述表述,问题就可以不必局限于 X i X_i Xi只取0, 1两个值的情况,事实也是如此,这就是较一般情况下得大数定理。“大数”的意思,就是指涉及大量数目的观察值 X i X_i Xi,它表明大数定理中指出的现象,只有在大量次数的实验和观察之下才能成立。例如一所大学可能包含上万名学生,如果我们随意观察一个学生的身高 X 1 X_1 X1,则 X 1 X_1 X1与全校学生的平均身高 a a a可能相去甚远。如果我们观察10个学生的身高取平均,则它有更大的机会与 a a a更接近些。如观察100个,则其平均又能更与 a a a接近些。再比如抛掷一颗均匀的6面骰子,1,2,3,4,5,6应等概率出现,所以每次扔出骰子后,出现的期望值是 1 + 2 + 3 + 4 + 5 + 6 6 = 3.5 \frac{1+2+3+4+5+6}{6}=3.5 61+2+3+4+5+6=3.5,基于大数定理,如果多次抛掷骰子,随着抛掷的次数增多,平均值(样本平均值)应该接近3.5。

下面给出投掷单个骰子的过程来展示大数定理。
在这里插入图片描述

代码如下:

clear all;
clf;
clc;
% Specify how many trials you want to run:
num_trials = 1000;

% Now grab all the dice rolls:
trials = randi(6, [1 num_trials]);

% Plot the results:
figure(1);

% Cumulative sum of the trial results divided by the index gives the average:
plot(cumsum(trials)./(1:num_trials), 'r-');

% Let's put a reference line at 3.5 just for fun (make the color a darker green as well):
hold on;
plot([1 num_trials], [3.5 3.5], 'color', [0 0.5 0]);

% Make it look pretty:
title('average dice value against number of rolls');
xlabel('trials');
ylabel('mean value');
legend('average', 'y=3.5');
axis([0 num_trials 1 6]);

定义

X 1 , X 2 , ⋅ ⋅ ⋅ X_1,X_2,··· X1,X2,是相互独立,服从同一分布的随机变量序列,且具有数学期望 E ( X k ) = μ ( k = 1 , 2 , ⋅ ⋅ ⋅ ) E(X_k)=\mu(k=1,2,···) E(Xk)=μ(k=1,2,).作前 n n n个变量的算数平均 1 n ∑ k = 1 n X k \frac{1}{n} \sum_{k=1}^{n}{X_k} n1k=1nXk,则对于任意 ε > 0 \varepsilon>0 ε>0,有
lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } = 1 (1) {\lim_{n \to \infty}}P\{|\frac{1}{n}\sum_{k=1}^{n}{X_k-\mu}|<\varepsilon\}=1\tag{1} nlimP{n1k=1nXkμ<ε}=1(1)

证明

参考前期文章:

切比雪夫不等式证明及应用
期望和方差的定义与性质

我们在随机变量的方差 D ( X k ) = σ 2 ( k = 1 , 2 , ⋅ ⋅ ⋅ ) D(X_k)=\sigma^2(k=1,2,···) D(Xk)=σ2(k=1,2,)存在,证明上述结果,由期望、方差和切比雪夫不等式可知
E ( 1 n ∑ k = 1 n X k ) = 1 n ∑ k = 1 n E ( X n ) = 1 n ( n μ ) = μ E(\frac{1}{n}\sum_{k=1}^{n}{X_k})=\frac{1}{n}\sum_{k=1}^{n}{E(X_n)}=\frac{1}{n}(n\mu)=\mu E(n1k=1nXk)=n1k=1nE(Xn)=n1(nμ)=μ
又由独立性得
D ( 1 n ∑ k = 1 n X k ) = 1 n 2 ∑ k = 1 n E ( X n ) = 1 n 2 ( n σ 2 ) = σ 2 n D(\frac{1}{n}\sum_{k=1}^{n}{X_k})=\frac{1}{n^2}\sum_{k=1}^{n}{E(X_n)}=\frac{1}{n^2}(n\sigma^2)=\frac{\sigma^2}{n} D(n1k=1nXk)=n21k=1nE(Xn)=n21(nσ2)=nσ2
由切比雪夫不等式可得
1 ≥ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } ≥ 1 − σ 2 / n ε 2 1\ge P\{|\frac{1}{n}\sum_{k=1}^{n}{X_k-\mu}| < \varepsilon\} \ge 1-\frac{\sigma^2/n}{\varepsilon^2} 1P{n1k=1nXkμ<ε}1ε2σ2/n
在上式中令 n → ∞ n\rightarrow\infty n,即得
lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } = 1 {\lim_{n \to \infty}}P\{|\frac{1}{n}\sum_{k=1}^{n}{X_k-\mu}|<\varepsilon\}=1 nlimP{n1k=1nXkμ<ε}=1

P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } P\{|\frac{1}{n}\sum_{k=1}^{n}{X_k-\mu}|<\varepsilon\} P{n1k=1nXkμ<ε}是一个随机事件。等式(1)表明,当 n → ∞ n\rightarrow\infty n时这个事件的概率趋于1.即对于任意正数 ε \varepsilon ε,当 n n n充分大时,不等式 ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε |\frac{1}{n}\sum_{k=1}^{n}{X_k-\mu}|<\varepsilon n1k=1nXkμ<ε成立的概率很大。通俗地说,辛钦大数定理是说,对于独立同分布且具有均值 μ \mu μ的随机变量 X 1 , ⋅ ⋅ ⋅ , X n X_1,···,X_n X1,,Xn,当 n n n很大时它们的算数平均 1 n ∑ k = 1 n X k \frac{1}{n}\sum_{k=1}^{n}{X_k} n1k=1nXk很可能接近于 μ \mu μ.

可参考前期文章:

依概率收敛

由前期文章辛钦大数定理又可以叙述为
弱大数定理(辛钦大数定理) 设随机变量 X 1 , X 2 , ⋅ ⋅ ⋅ X_1,X_2,··· X1,X2,相互独立,服从同一分布且具有数学期望 E ( X k ) = μ ( k = 1 , 2 , ⋅ ⋅ ⋅ ) E(X_k)=\mu(k=1,2,···) E(Xk)=μ(k=1,2,).则序列 X ‾ = 1 n ∑ k = 1 n X k \overline{X}=\frac{1}{n} \sum_{k=1}^{n}{X_k} X=n1k=1nXk依概率收敛于 μ \mu μ,即 X ‾ ⟶ P μ . \overline{X}\stackrel{P}{\longrightarrow}\mu. XPμ.


更多内容请关注公众号:Herbie


参考文献

[1] 茆诗松, 程依明, 濮晓龙. 概率论与数理统计教程(第二版)[M]. 高等教育出版社, 2019.
[2] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 高等教育出版社, 2010.
[3] https://zh.wikipedia.org/wiki/%E5%A4%A7%E6%95%B8%E6%B3%95%E5%89%87

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值