【高等数学】通过俩条空间直线求得公垂线的求法

1. 先利用俩空间直线的方向向量通过向量积求得其公垂线的方向向量

2. 求出过空间直线L1及公垂线的平面

因为是过公垂线的平面,所以它与直线L1的方向向量垂直,与公垂线的方向向量也垂直。

即利用向量积求得所求平面的法向量,然后结合直线L1的定点从而求得平面方程

3. 求出过空间直线L2及公垂线的平面

4. 例题:

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAU2t54oCi5q6H,size_20,color_FFFFFF,t_70,g_se,x_16

 watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAU2t54oCi5q6H,size_10,color_FFFFFF,t_70,g_se,x_16

 

### 计算三维空间中点到直线的最短距离 在三维空间中,给定一通过点 \( P_0 \) 并沿向量 \( v_L \) 方向的直线以及另一个不在该直线上的一般点 \( Q \),可以利用矢量运算来找到这者之间的最短距离。这个过程涉及到构建个矢量——从 \( P_0 \) 到 \( Q \) 的位置矢量和代表直线方向的方向矢量\( v_L \)[^1]。 为了得到垂线的距离,先要理解如何投影一个矢量到另一个上。这里会用到点乘的概念,即对于任意矢量 \( V1(x1, y1, z1) \) 和 \( V2(x2, y2, z2) \),它们之间做点乘的结果等于各自对应分量相乘后的总合\[ V1\cdot V2=x1*x2+y1*y2+z1*z2 \][^2]。当我们将这一点应用于当前场景时,则可以通过下面的方式计算: 设 \( d \) 表示所求得最小距离;令 \( PQ \) 是连接已知外点 \( Q \) 与直线上任选一点 \( P_0 \) 形成的矢量; 那么有: \[ d=\frac{\left|PQ\times{v_L}\right|}{\left|v_L\right|} \] 上述表达式中的分子部分实际上就是叉积绝对值,它给出了由这个矢量构成平行四边形面积大小的一个度量,在这里是用来衡量者间偏离程度的关键指标之一。而分母则是指定了单位长度化处理过的直线方向矢量模长,从而使得最终结果能够反映真实的几何意义上的距离概念。 下面是基于Python语言的具体实现方式: ```python import numpy as np def point_to_line_distance(P0, PL_direction, Q): """ :param P0: A point on the line (numpy array of size 3) :param PL_direction: Direction vector of the line (numpy array of size 3) :param Q: The external point whose distance to find from the given line (numpy array of size 3) :return: Shortest perpendicular distance between point and line. """ # Vector PQ is created here using subtraction operation over points coordinates arrays PQ = Q - P0 cross_product = np.cross(PQ, PL_direction) magnitude_cross_product = np.linalg.norm(cross_product) magnitude_PL_direction = np.linalg.norm(PL_direction) shortest_distance = magnitude_cross_product / magnitude_PL_direction return shortest_distance # Example usage: if __name__ == "__main__": p0_example = np.array([1., 2., 3.]) # An example point lying on target line L pl_dir_example = np.array([-1., 4., 7.]) # Line's direction vector q_point_example = np.array([8., 9., 10.]) # External point we want measure its min distace towards our defined 'line' result = point_to_line_distance(p0_example, pl_dir_example, q_point_example) print(f"The minimum perpendicular distance between Point {q_point_example.tolist()} and Line passing through [{p0_example.tolist()}, ... ] with direction {pl_dir_example.tolist()}: ",result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值