机器学习——特征工程

特征工程9大方法
        特征工程是机器学习和数据分析中至关重要的一步,它涉及对原始数据进行转换、提取和选择,以便更好地表示数据并改善机器学习算法的性能。特征工程的目标是将原始数据转化为机器学习算法可以理解和处理的形式,同时最大程度地保留有关数据的有用信息。通过精心设计的特征工程流程,我们可以提取数据中蕴含的关键信息,能够更好地描述数据、发现数据的潜在模式,并构建出更准确、稳健的机器学习模型。

文章目录
特征工程9大方法
一、数据清洗
        1.缺失值处理
        2.异常值处理
        3.重复值处理
二、特征缩放
        1.最小-最大缩放(Min-Max Scaling)
        2.标准化(Standardization)
         3.归一化(Normalization)
三、特征编码
        1.独热编码(One-Hot Encoding)
        2.标签编码(Label Encoding)
        3.特征哈希(Feature Hashing)
四、特征选择
        1.过滤法(Filtering Method)
        2.包装法(Wrapper Method)
         3.嵌入法(Embedded Method)
五、特征变换
        1.多项式特征
        2.对数变换
        3.指数变换
六、文本处理
        1.分词
         2.停用词移除
        3.词袋表示
        4.TF-IDF表示(Term Frequency-Inverse Document Frequency)
七、时间序列特征提取
         1.滞后特征
         2.移动平均特征
         3.时序特性
八、组合特征
         1.特征交叉::sparkles:
        2.特征合并:star:
九、特征降维
         1.主成分分析(PCA)
        2.线性判别分析(LDA)
        3.特征选择
        4.特征提取
十、本文相关链接::

特征工程是机器学习和数据分析中不可或缺的环节。它能够提高模型性能、降低过拟合风险、处理数据质量问题,同时改善数据表示和计算效率。正确应用特征工程可以使机器学习模型更加准确。

以下是特征几个方面的重要性:

  1. 提高模型性能:良好的特征工程可以显著提高机器学习模型的性能。通过选择、转换和创建适当的特征,可以使模型更好地捕捉数据中的模式和关系,从而提高预测准确性。
  2. 降低过拟合风险:特征工程有助于减少过拟合的风险。通过移除冗余特征、进行特征选择和降维等技术,可以减少模型对噪声和不相关信息的敏感性,提高模型的泛化能力。
  3. 处理缺失值和异常值:特征工程可以处理数据中的缺失值和异常值。通过选择合适的方法来处理缺失值(如填充或删除)和异常值(如截断或替换),可以提高数据的完整性和质量,从而改善模型的性能。
  4. 改善数据表示:特征工程可以改善数据的表示形式,使其更适合机器学习算法的处理。例如,将文本数据转换为数值特征或使用特征缩放技术将不同尺度的特征统一到相似的范围内,有助于提高模型的稳定性和效果。
  5. 揭示隐藏信息:通过特征工程,可以从原始数据中提取隐藏的信息和关系。例如,通过时间序列特征提取可以捕捉到时间的趋势和周期性,通过特征组合可以发现特征之间的交互作用,从而提供更丰富的特征表示。
  6. 改善计算效率:特征工程可以减少数据维度和特征数量,从而提高计算效率。通过特征选择和降维技术,可以减少模型训练和推理的计算负担,加快模型的训练和预测速度。

文章总结了九种常用的特征工程方法

  1. 数据清洗:对原始数据进行处理和修复,以去除或纠正数据中的错误、不一致性和缺失值,以确保数据的准确性、完整性和一致性。
  2. 特征缩放:将特征数据按比例缩放,使其在相同的数值范围内。
  3. 特征编码:将非数值型的特征转化为数值型的特征,以便机器学习算法能够处理。
  4. 特征选择:从原始特征集合中选择出最具有代表性或最能够区分不同类别的特征。
  5. 特征变换:对原始特征进行变换,以便更好地满足模型的需求或提取更有用的特征。
  6. 文本处理:将文本数据转化为数值型的特征,以便机器学习算法能够处理。
  7. 时间序列特征提取:从时间序列数据中提取有用的特征,以便进行预测或分析。
  8. 组合特征:将多个特征进行组合,生成新的特征,以提供更丰富的信息。
  9. 特征降维:高维特征空间转化为低维特征空间,以减少特征维度和数据复杂度,提高模型的训练效率和泛化能力。

一、数据清洗
        数据清洗是特征工程中的一个重要步骤,它涉及检测和处理数据中的缺失值、异常值和重复值,以确保数据的准确性和完整性。下面是数据清洗的一些常见操作:

        1.缺失值处理
检测缺失值:通过查看数据中的空值、NaN(Not a Number)或特定的占位符来检测缺失值。

处理缺失值:根据缺失值的情况,可以选择删除包含缺失值的行或列,填充缺失值(如使用均值、中位数或众数进行填充)或使用插值方法进行填充。

举例:

import pandas as pd

#创建包含缺失值的示例数据集
data={'A':[1,2,None,4],'B':[6,None,8,9]}
df=pd.DataFrame(data)

#删除包含缺失值的行
df.dropna(inplace=True)

#使用均值填充缺失值
df.fillna(df.mean(),inplace=True)

#使用插值方法填充缺失值
df.interpolate(method='linear',inplace=True)

print(df)



#删除包含缺失值的行
 df.dropna(inplace=True)
 print(df)
 
 #输出删除包含缺失值的行的结果:
 ```
 A     B
 0 1.0	6.0
 3 4.0	9.0	
 ```


df.dropna() 是 Pandas 中用于删除包含缺失值的行或列的方法。它可以根据不同的参数来删除 DataFrame 中的缺失值所在的行或列,inplace=True是一个可选参数,表示对原始数据框进行就地修改,即直接在原始数据框上删除行,而不返回一个新的数据框。

#使用均值填充缺失值
df.fillna(df.mean(),inplace=True)
print(df)

#输出使用均值填充缺失值的结果:
```
    A         B
0  1.000000  6.000000
1  2.000000  7.666667
2  2.333333  8.000000
3  4.000000  9.000000
```

df.fillna() 是 Pandas 中用于填充缺失值的方法。它可以使用指定的值或方法来填充 DataFrame 中的缺失值,df.mean()是调用DataFrame对象的mean()方法,用于计算每列的均值。

#使用插值方法填充缺失值
df.interpolate(method='
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值