SPSS26统计分析笔记——10 生存分析

1 生存分析基本概念

在这里插入图片描述

2 寿命表分析

        寿命表分析(Life Table Analysis)是生存分析中的一种方法,用于估计事件发生的时间分布,特别是当数据包含删失数据时。寿命表分析主要通过将生存时间划分为若干时间段,计算每个时间段的生存率和风险率,来分析个体在某一时间段内的生存情况。它与Kaplan-Meier分析类似,但寿命表方法通常使用固定的时间间隔。
E ( D x ) = ∑ i = 1 n x s i − r i q x + r i = d x E({D_x}) = \sum\limits_{i = 1}^{{n_x}} {{s_i} - {r_i}{q_{x + {r_i}}} = {d_x}} E(Dx)=i=1nxsiriqx+ri=dx
         n x {n_x} nx x x x岁时候进入研究的样本个数;
         r i {r_i} ri i i i个样本在 x x x岁时的进入时间 ( 0 ⩽ r i < 1 ) (0 \leqslant {r_i} < 1) (0ri<1)
         s i {s_i} si i i i个样本在 x x x岁时的退出时间 ( 0 ⩽ s i < 1 ) (0 \leqslant {s_i} < 1) (0si<1)
         q x + r i {q_{x + {r_i}}} qx+ri x + r i x + {r_i} x+ri岁进入研究的人再活 s i − r i {s_i} - {r_i} siri岁后死亡的概率;
         s i − r i {s_i} - {r_i} siri i i i个样品在 x x x岁时的暴露;
         d x {d_x} dx样本在 [ x , x + 1 ) [x,x + 1) [x,x+1)岁间死亡的个体数量;
         D x {D_x} Dx总体在 [ x , x + 1 ) [x,x + 1) [x,x+1)岁间死亡的个体数量。
        由于: s i − r i q x + r i ≈ ( s i − r i ) q x {s_i} - {r_i}{q_{x + {r_i}}} \approx ({s_i} - {r_i}){q_x} siriqx+ri(siri)qx
        所以: E ( D x ) = q x ∑ i = 1 n x ( s i − r i ) = d x ⇒ q ^ x = d x ∑ i = 1 n x ( s i − r i ) E({D_x}) = {q_x}\sum\limits_{i = 1}^{{n_x}} {({s_i} - {r_i}) = {d_x} \Rightarrow } {\hat q_x} = \frac{{{d_x}}}{{\sum\limits_{i = 1}^{{n_x}} {({s_i} - {r_i})} }} E(Dx)=qxi=1nx(siri)=dxq^x=i=1nx(siri)dx
         q x {q_x} qx x x x岁存活的人在 [ x , x + 1 ) [x,x + 1) [x,x+1)岁死亡的概率, q ^ x {\hat q_x} q^x为其近似值。
在这里插入图片描述

3 Kaplan-Meier分析

        Kaplan-Meier分析是一种用于估计生存函数的非参数方法,特别适合于生存数据中含有删失数据的情况。与寿命表分析相比,Kaplan-Meier分析不需要将时间划分为固定间隔,而是基于事件发生的时间点进行估计,因此可以更准确地估计生存率。
        积累生存分析估计值: V ^ a r [ S ^ ( t ) ] = [ S ^ ( t ) ] 2 ∑ t i ⩽ 1 d i y i ( y i − d i ) \hat Var[\hat S(t)] = {[\hat S(t)]^2}\sum\limits_{{t_i} \leqslant 1} {\frac{{{d_i}}}{{{y_i}({y_i} - {d_i})}}} V^ar[S^(t)]=[S^(t)]2ti1yi(yidi)di
         t i {t_i} ti i i i个事件发生时刻;
         d i {d_i} di在时刻 t i {t_i} ti发生事件的个体数;
         y i {y_i} yi在时刻 t i {t_i} ti面临分险的个体数;
        生存分析 p p p分位点 x p {x_p} xp x p = i n f { t : S ( t ) ⩽ 1 − p } {x_p} = inf\left\{ {t:S(t) \leqslant 1 - p} \right\} xp=inf{t:S(t)1p}
在这里插入图片描述

4 Cox回归分析

        Cox回归分析,也称为Cox比例风险模型,是一种生存分析方法,用于评估多个协变量(独立变量)对生存时间(因变量)的影响。它可以处理删失数据,即那些在研究结束时仍未发生事件(如死亡、复发、故障等)的个体。
        Cox模型的核心思想:Cox模型的目标是估计风险函数(Hazard Function),即某个个体在某时刻面临事件(如死亡、复发、设备故障)发生的风险概率,条件是该个体已经存活到该时刻。风险函数可以理解为单位时间内事件发生的速率。
        Cox比例风险模型的风险函数形式如下: h ( t , x ) = h 0 ( t ) e β 1 x 1 + β 2 x 2 + ⋯ + β m x m h(t,x) = {h_0}(t){e^{{\beta _1}{x_1} + {\beta _2}{x_2} + \cdots + {\beta _m}{x_m}}} h(t,x)=h0(t)eβ1x1+β2x2++βmxm ln ⁡ ( h ( t , x ) h 0 ( t ) ) = β 1 x 1 + β 2 x 2 + ⋯ + β m x m \ln \left( {\frac{{h(t,x)}}{{{h_0}(t)}}} \right) = {\beta _1}{x_1} + {\beta _2}{x_2} + \cdots + {\beta _m}{x_m} ln(h0(t)h(t,x))=β1x1+β2x2++βmxm
         x 1 + x 2 + ⋯ + x m {x_1} + {x_2} + \cdots + {x_m} x1+x2++xm危险因素(协变量);
         h 0 ( t ) {h_0}(t) h0(t)基准风险函数,表示在没有任何协变量影响下的风险率;
         h ( t , x ) h(t,x) h(t,x)是给定协变量 X X X的个体在时间 t t t的风险函数。
        比例风险假设要求,不同个体的风险函数之比在任何时间点都是常数,也就是说,协变量的效应不会随时间而变化。
        Cox模型的比例风险假设: h { ( t ) , ( x 1 , x 2 , ⋯   , x m ) } h { ( t ) , ( x 1 ∗ , x 2 ∗ , ⋯   , x m ∗ ) } = e β 1 x 1 + β 2 x 2 + ⋯ + β m x m e β 1 x 1 ∗ + β 2 x 2 ∗ + ⋯ + β m x m ∗ \frac{{h\left\{ {(t),({x_1},{x_2}, \cdots ,{x_m})} \right\}}}{{h\left\{ {(t),(x_1^*,x_2^*, \cdots ,x_m^*)} \right\}}} = \frac{{{e^{{\beta _1}{x_1} + {\beta _2}{x_2} + \cdots + {\beta _m}{x_m}}}}}{{{e^{{\beta _1}x_1^* + {\beta _2}x_2^* + \cdots + {\beta _m}x_m^*}}}} h{(t),(x1,x2,,xm)}h{(t),(x1,x2,,xm)}=eβ1x1+β2x2++βmxmeβ1x1+β2x2++βmxm
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值