用均值平移算法查找目标

如果我们已经知道图像中某个物体的大致位置,就可以用概率分布图找到物体的准确位置。窗口中概率最大的位置就是物体最可能出现的位置。因此,我们可以从一个初始位置开始,在周围反复移动以提高局部匹配概率,也许就能找到物体的准确位置。这个实现方法称为均值平移算法。
采用 HSV 色彩空间的色调通道来描述物体。这意味着需要把图像转换成 HSV 色彩空间并提取色调通道,然后计算指定 ROI 的一维色调直方图:

// 读取参考图像
cv::Mat image= cv::imread("baboon01.jpg"); 
// 狒狒脸部的 ROI
cv::Rect rect(110, 45, 35, 45); 
cv::Mat imageROI= image(rect); 
// 得到狒狒脸部的直方图
int minSat=65; 
ColorHistogram hc; 
cv::Mat colorhist= hc.getHueHistogram(imageROI,minSat);

我们在 ColorHistogram 类中增加了一个简便的方法来获得色调直方图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值