Fine-tune BERT for Extractive Summarization

该博客介绍了如何将BERT应用于抽取式摘要,提出BERTSUM模型。通过对BERT的输入序列和embedding进行修改,使得BERT能够输出sentence-level的表示,并在CNN/DM和NYT数据集上实现SOTA。实验表明,trigram blocking机制和 interval segment embeddings 对提升模型性能有显著作用。
摘要由CSDN通过智能技术生成

中文标题:精调BERT做抽取式摘要

论文链接:​​​​​​https://arxiv.org/pdf/1903.10318.pdf

发表:EMNLP 2019

组织:爱丁堡大学

开源链接:GitHub - nlpyang/BertSum: Code for paper Fine-tune BERT for Extractive Summarization

Abstract

本文将BERT用于抽取式摘要,提出了BERT的一个变体:BERTSUM。

1. Introduction

作者在本文主要专注于利用BERT来解决抽取式摘要的问题,作者发现一个扁平的句间Transformer的结构效果最好,在CNN/DM和NYT两个数据集上达到了SOTA。

2. Methodology

抽取式摘要的主要思想是对于一个文档中的句子集合d=(sent_{1},sent_{2},...,sent_{m}),模型预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值