结构光照明显微镜成像重建算法的仿真(matlab)

Abstract:

由于多数关于SIM成像技术的论文中只是简单地讲解了SIM成像重建算法的数学理论,而没有具体展现其代码实现方法。纵使在像OpenSIM这样的开源代码中,展现了SIM成像重建算法的详尽代码,但是代码注释编写不够详尽,代码量也较为庞大,不够简洁,造成阅读起来较为困难,对初学者并不友好。

所以我根据SIM成像理论,编写了最简的MATLAB实现算法,来展示SIM成像技术实现超分辨成像的可行性和有效性,并详细介绍SIM成像技术的重建算法的每一个细节。相关matlab的实现代码和数据已经被分享到我的GITHUB代码仓库-matlab-/final_final_SIM.mlx at main · crease123/-matlab-

Introduction

光学显微镜在生命科学的研究中起到了至关重要的作用。然而光学显微镜的空间分辨率被衍射所限。为了突破光学显微镜的衍射极限,实现超分辨率的光学成像,在过去的几十年里,科学家门创造出了许多技术,例如单分子成像,和结构光照明成像技术等。在超分辨成像技术中,结构光照明显微成像(SIM)技术是一个革命性的创新,因为它是从频域对图像进行重建实现超分辨率,而其他技术如STED,PALM/STORM等技术则是从空域对图像进行重建实现超分辨。并且SIM极大地降低了对样本的要求,任何用于宽场荧光显微镜的荧光样本都可用于SIM成像。但是由于实验的不完美和不可避免的实验中实验参数的不确定性,例如照明模式的相位和方向,结构光照明显微镜成像技术的重建过程相当具有挑战性。而为了以最简的方式向读者展示SIM成像技术的重建算法,本文将忽略在实际实验中照明模式的相位、方向等参数的不确定性和在实际成像过程中会引入的噪声。

在文中,我们首先介绍SIM成像实现超分辨成像的数学原理,然后将详细介绍SIM超分辨成像重建算法的matlab实现及结果展示,最后再对SIM成像技术的意义进行讨论。

Theory

结构光照明显微成像技术是通过用周期性的结构光(正弦结构光)照明被荧光标记了的样本实现将原本不能进入物镜OTF内的高频信息搬移到OTF内,然后通过算法将显微镜得到的图像的频谱图进行恢复进而重建,即让原本被搬移的频率组分搬移回它们原本的位置然后再进行傅里叶逆变换从而实现超分辨率成像。以下来具体讲解结构光照明显微镜成像重建算法的仿真步骤。

1. 生成正弦的照明结构光

I_{\theta,\phi}(\vec{r}) 代表正弦模式照明光,其具体表达式如下:

时域表达式:I_{\theta,\phi}(\vec{r})=I_0[1-\frac{m}{2}cos(2\pi\mathbf{p_\theta}\cdot\mathbf{r}+\phi) ]

频域表达式:\tilde{I}_{\theta,\phi}(\mathbf{k})=I_0[\frac{1}{2}-\frac{m}{2} \cdot \frac{1}{2} (\delta(\mathbf{k}-\mathbf{p_\theta})e^{-i\phi}+\delta(\mathbf{k}+\mathbf{p_\theta})e^{i\phi}) ]

其中:\mathbf{r}\equiv(x,y) :二维空间位置向量;I_0 :峰值照明强度,在本仿真中我采用了I_0=1\mathbf{p_\theta}\equiv(p\cdot cos(\theta),p\cdot sin(\theta)) :在倒易空间中照明模式的表示,即结构光调制荧光样本后使其产生的频移量;m:调制系数,在本仿真中我采用了m=1;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值