第一节:深度神经网络

本文介绍了神经网络中的基本概念,包括神经元如何通过矩阵运算表示,深度神经网络的权重和偏置,以及激活函数如sigmoid和ReLU的作用。此外,还概述了模型架构、参数优化(梯度下降)和防止过拟合与欠拟合的方法。
摘要由CSDN通过智能技术生成

1.神经元与矩阵

神经元类似人的大脑神经,对于一个事件人会从不同角度分析,并且每个角度都有各自的权重。深度神经网络中的神经元也是类似wij代表xj在第i个神经元上的权重,b表示该神经元的偏置值。

\hat{y}=b+\sum_{j}^{K}w_{j}x_{j}

根据上述公式,不难得出:

r1=w_{11}x_{1}+w_{12}x_{2}+w_{13}x_{3}+w_{14}x_{4}+b1

r2=w_{21}x_{1}+w_{22}x_{2}+w_{23}x_{3}+w_{24}x_{4}+b2

r3=w_{31}x_{1}+w_{32}x_{2}+w_{33}x_{3}+w_{34}x_{4}+b3

而r1, r2, r3又是新一的全连接层,重复上述做法可得:

\hat{y}=r_{1}c_{1}+r_{2}c_{2}+r_{3}c_{3}+b

其中,b为本层偏置值,ci(i=1, 2, 3)为ri(i=1, 2, 3)对应的权重。

仔细观察不难发现,推导公式可由矩阵乘法表示:

         

2.激活函数

上述运算结果可以得出:无论有多少层全连接层,神经网络有多深,单纯的线性关系都可以使得最终的\hat{y}写成若干向量的和。显然这样形成的y=f(x)都是线性函数无法解决大多数问题。因此我们需要引入激活函数。

激活函数一般为非线性,因此最终的神经网络也可以逼近非线性函数。常见的激活函数有:

a.sigmoid函数:

S(x)=1/1+{e_{}}^{-x}

b.relu函数:

f(x)=max(0, x)

例如sigmoid函数,含有e_{}^{-x},故可以无限阶求导,这是一个十分重要的特性。

3.神经网络

1>参数

b为一个数,记录了当前层神经元的偏置,c^{T}为记录了本全连接网络层与上一层每个神经元之间的权重的行向量\sigma为激活函数,函数内是一个列向量。b是表示上一层全部神经元偏置列向量,W是记录了上一层与上上层之间神经元的权重的矩阵x是上上层神经元的列向量

2>模型架构

3>深度学习训练过程

事实上,神经网络架构应有若干层上述模型。这里对一层内容进行分析。

a.xi根据 1 中算法得出ri。

b.在此基础上将结果放入激活函数运算得到ai。

c.重复a中算法与本层权重求内积,加上最后的偏置得到\hat{y}

一个简单的两层神经网络\hat{y}计算公式如下:

\hat{y}=b+\sum _{i}^{}c_{i}sigmoid(b_{i}+\sum _{j}^{}w_{ij}x_{j})

i代表上图中a的下标范围[1, 3],j代表r的下标范围[1, 3]。

上述过程中,由x1, x2, x3计算得到\hat{y}称为前向过程,而经过前向过程后,需要使用第0节中涉及到的梯度下降算法(Gradient Descent)进行梯度回传,也叫反向传播过程。

对每一个公式中的参数分别求偏导,以w为例,w不断减去学习率与偏导数的积使其尽可能达到取得梯度的点。不断调整学习率,使得目标函数尽可能契合

4.名词

a.神经元:神经网络中的节点(Neuron)。

b:fc:Fully Connected Network全连接网络,全连接网络由若干个全连接层构成。

c.过拟合和欠拟合:

过拟合(Overfit):在训练过程中,训练函数将每一个点尽数包含。斗折蛇行,适得其反,难以对新数据准确预测,即界外预测能力差。一般模型太深就会造成过拟合。

欠拟合(Underfit):达不到较为精准的预测,一般归因于模型太浅。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值