(六)机器学习---聚类与K-means

 到本篇文章,我们先对前几篇所学习的算法进行一个回顾:

而本篇文章我们将会介绍聚类以及K-means算法。


分类问题回归问题聚类问题各种复杂问题
决策树√线性回归√K-means√神经网络√
逻辑回归√岭回归密度聚类深度学习√
集成学习√Lasso回归谱聚类条件随机场
贝叶斯层次聚类隐马尔可夫模型
支持向量机高斯混合聚类LDA主题模型

目录

一.聚类及K-means算法

(1)聚类

(2)聚类的应用

(3)K-means

(4)K-means相似度计算

(5)K-means的损失函数

(6)小结

二.基于Scikit-learn实现聚类

(1)Python支持的K-means聚类实现

(2)K-means算法特点

三.聚类模型的性能评估

(1)聚类模型的性能评估——兰德指数

(2)聚类模型的性能评估——轮廓系数

(3)聚类模型性能评估的程序实现

(4)小结

四.常用聚类算法简介

(1)常用聚类方法

(2)基于密度的聚类——DBSCAN

(3)基于层次的聚类——BIRCH

(4)小结


一.聚类及K-means算法

(1)聚类

(2)聚类的应用

(3)K-means

(4)K-means相似度计算

(5)K-means的损失函数

(6)小结


二.基于Scikit-learn实现聚类

(1)Python支持的K-means聚类实现

 

(2)K-means算法特点


三.聚类模型的性能评估

(1)聚类模型的性能评估——兰德指数

(2)聚类模型的性能评估——轮廓系数

(3)聚类模型性能评估的程序实现

(4)小结


四.常用聚类算法简介

(1)常用聚类方法

(2)基于密度的聚类——DBSCAN

(3)基于层次的聚类——BIRCH

(4)小结

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值