【图像处理】【采用LSB编码】显示RGB图像、显示灰度图像(原始图像、具有N位LSB掩码和插入N位LSB隐藏文本位)并描述图像(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

显示RGB图像

显示灰度图像

显示带有N位LSB掩码的灰度图像

描述图像研究

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

在图像处理领域,采用最低有效位(Least Significant Bit, LSB)编码进行信息隐藏是一种常见的隐写术技术。这种技术通过修改数字图像像素值的最低有效位来嵌入秘密信息,如文本、密码或其他图像数据,同时尽量保持图像的视觉质量不变。下面是关于如何显示RGB图像与灰度图像,并应用LSB编码进行图像研究的步骤描述:

显示RGB图像

  1. 读取图像文件:首先,使用图像处理软件或编程语言(如Python中的PIL或OpenCV库)读取一幅RGB图像。
  2. 解码像素值:RGB图像中的每个像素由红(R)、绿(G)、蓝(B)三个颜色通道组成,每个通道通常占用8位,表示从0到255的整数值。
  3. 显示图像:直接利用图像处理库的功能显示原始的RGB图像,观察其颜色和细节。

显示灰度图像

  1. 转换灰度:将RGB图像转换为灰度图像,这一过程通常涉及计算每个像素点的R、G、B值的加权平均。

    𝐺𝑟𝑎𝑦=0.299∗𝑅+0.587∗𝐺+0.114∗𝐵Gray=0.299∗R+0.587∗G+0.114∗B

  2. 显示原始灰度图像:显示未经修改的灰度图像,这是后续操作的基础参照。

显示带有N位LSB掩码的灰度图像

  1. 应用LSB掩码:定义一个N位的掩码,对灰度图像的每个像素值的最低N位进行修改。例如,若N=2,则修改像素值的最后两位。

  2. 隐藏信息:将秘密文本或二进制信息转化为位流,然后利用掩码将这些位逐个插入图像像素的最低N位中,完成信息的隐藏。

  3. 显示嵌入信息的图像:显示经过LSB信息隐藏处理后的灰度图像,观察其与原始灰度图像的视觉差异。好的LSB隐写技术应确保肉眼难以察觉到差异。

描述图像研究

  • 视觉保真度分析:比较原始图像和嵌入信息后的图像,评估视觉质量的下降程度。高质量的隐写应该在人眼几乎不可分辨的情况下成功隐藏信息。
  • 信息容量评估:分析图像的尺寸、颜色深度与所选LSB位数如何影响可以隐藏的信息量。
  • 安全性考量:讨论LSB隐写术的脆弱性,比如统计分析攻击、差分分析等,以及如何通过更复杂的编码技巧或结合其他隐写方法提升安全性。
  • 鲁棒性测试:考察图像经过压缩、裁剪、旋转等常见操作后,隐藏信息的恢复能力,评估所采用LSB方法的鲁棒性。

通过上述步骤,可以全面了解和研究LSB编码在图像隐写术中的应用效果,以及它如何影响图像的质量、安全性和鲁棒性。

📚2 运行结果

部分代码:

            figureTitle = ['Description ', ...
                            'Images for RGB LSB Steganography']; 

            figure('Name', figureTitle,'NumberTitle','off'),

numberOfRowPlot = 1;
numberOfColPlot = 3;
plotIndex = 0;

plotIndex = plotIndex + 1;
subplot(numberOfRowPlot, numberOfColPlot, plotIndex);
imshow(targetImage);
title('Original Image');
hold on;

plotIndex = plotIndex + 1;
subplot(numberOfRowPlot, numberOfColPlot, plotIndex);
imshow(dataInDecMasked);
title(['Image with ' num2str(N) '-bit LSB masked']);

plotIndex = plotIndex + 1;
subplot(numberOfRowPlot, numberOfColPlot, plotIndex);
imshow(dataInDec_WithInsertedBits);
title('Image with hidden text');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]邹娟,贾世杰.基于LSB图像隐藏系统的设计与实现[J].计算机技术与发展, 2007, 17(5):3.DOI:10.3969/j.issn.1673-629X.2007.05.035.

[2]张玉明,刘家保.基于复合混沌及LSB的图像加密和隐藏技术[J].重庆工商大学学报:自然科学版, 2014.DOI:CNKI:SUN:YZZK.0.2014-11-011.

[3]骆璠.灰度图像LSB算法的自适应隐写分析[D].西安电子科技大学,2013.DOI:10.7666/d.D365486.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值