💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于ELM(Extreme Learning Machine,极限学习机)的共享单车租赁预测研究是一个结合了机器学习和数据科学的创新项目。ELM作为一种快速的单层前馈神经网络学习算法,具有学习速度快、泛化能力强等优点,适合用于处理共享单车租赁预测这类时间序列预测问题。以下是对该研究的详细探讨:
一、研究背景
随着共享经济的蓬勃发展和城市化进程的加快,共享单车作为一种绿色、便捷的出行方式,在城市交通中扮演着越来越重要的角色。然而,如何准确预测共享单车的租赁需求,以优化资源配置和提高运营效率,成为了共享单车公司面临的重要挑战。基于ELM的共享单车租赁预测研究,旨在通过利用ELM算法的强大学习能力,对共享单车租赁数据进行挖掘和分析,从而实现对未来租赁需求的精准预测。
二、数据准备
1. 数据来源
共享单车租赁数据通常来源于共享单车公司的运营系统,包括用户骑行记录、天气信息、时间信息等。这些数据构成了预测模型的基础。
2. 数据特征
为了构建有效的预测模型,需要选择合适的数据特征。共享单车租赁预测的数据特征可能包括:
- 时间特征:如日期、时间(小时/分钟)、季节、节假日、工作日/非工作日等。
- 天气特征:如温度、湿度、风速、天气状况(晴、阴、雨、雪等)。
- 地点特征:如起始站点、结束站点、区域人口密度等(如果数据可用)。
- 历史租赁量:过去一段时间内的共享单车租赁数量,用于捕捉时间序列的趋势和周期性。
3. 数据预处理
在数据准备阶段,需要进行数据清洗、缺失值处理、异常值检测与处理等步骤,以确保数据的质量和准确性。同时,还需要对数据进行归一化处理,以消除不同特征之间的量纲差异,提高模型的收敛速度和预测精度。
三、模型构建
1. ELM算法介绍
ELM是一种新型的快速学习算法,它随机产生输入层与隐藏层之间的连接权值以及隐藏层神经元的偏置,并在训练过程中保持不变,只需要设置隐藏层神经元的个数,便可以获得唯一的最优解。ELM具有学习速度快、泛化能力强等优点,特别适用于处理大规模数据集。
2. 模型参数设置
在构建ELM模型时,需要设置隐藏层神经元的个数。这个参数的选择对模型的性能有重要影响。一般来说,隐藏层神经元的个数越多,模型的复杂度越高,但也可能导致过拟合问题。因此,需要通过交叉验证等方法来确定最优的隐藏层神经元个数。
3. 模型训练与评估
将处理好的数据划分为训练集和测试集,使用训练集数据训练ELM模型,并使用测试集数据评估模型的性能。评估指标通常包括均方误差(MSE)、均方根误差(RMSE)、R²分数等。通过不断调整模型参数和比较不同参数设置下的模型性能,选择最优的模型进行部署。
四、结果分析与应用
1. 结果分析
通过对ELM模型的预测结果进行分析,可以了解不同因素对共享单车租赁需求的影响程度。例如,可以分析工作日和节假日的租赁需求差异、天气变化对租赁需求的影响等。同时,还可以评估模型的预测精度和稳定性,以判断模型是否满足实际需求。
2. 应用建议
基于ELM的共享单车租赁预测模型可以为共享单车公司的运营和调度提供科学依据。根据模型的预测结果,公司可以制定更加科学合理的运营策略。例如,在高需求时段提前增加车辆投放;在低需求时段减少车辆投放以降低成本;根据天气变化调整车辆布局等。此外,还可以将预测结果用于制定促销活动计划、优化站点布局等方面,以提高公司的运营效率和用户满意度。
五、结论与展望
基于ELM的共享单车租赁预测研究为共享单车公司的运营和调度提供了新的思路和方法。ELM算法以其快速的学习速度和强大的泛化能力在共享单车租赁预测中展现出了良好的性能。未来随着数据量的不断增加和算法的不断优化,基于ELM的共享单车租赁预测模型的预测精度和实用性有望进一步提高。同时,还可以探索ELM与其他机器学习算法的融合应用,以进一步提升模型的预测能力和应用范围。
📚2 运行结果
部分代码:
def evaluate_forecasts(Ytest, predicted_data, n_out): # 定义一个函数来评估预测的性能。 mse_dic = [] rmse_dic = [] mae_dic = [] mape_dic = [] r2_dic = [] # 初始化存储各个评估指标的字典。 table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2']) for i in range(n_out): # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标 actual = [float(row[i]) for row in Ytest] #一列列提取 # 从测试集中提取实际值。 predicted = [float(row[i]) for row in predicted_data] # 从预测结果中提取预测值。 mse = mean_squared_error(actual, predicted) # 计算均方误差(MSE)。 mse_dic.append(mse) rmse = sqrt(mean_squared_error(actual, predicted)) # 计算均方根误差(RMSE)。 rmse_dic.append(rmse) mae = mean_absolute_error(actual, predicted) # 计算平均绝对误差(MAE)。 mae_dic.append(mae) MApe = mape(actual, predicted) # 计算平均绝对百分比误差(MAPE)。 mape_dic.append(MApe) r2 = r2_score(actual, predicted) # 计算R平方值(R2)。 r2_dic.append(r2) if n_out == 1: strr = '预测结果指标:' else: strr = '第'+ str(i + 1)+'步预测结果指标:' table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]陈鑫,刘琦.基于时间序列分析的共享单车未来格局预测[J].现代营销(下旬刊), 2017(10):216-216.DOI:10.3969/j.issn.1009-2994.2017.10.174.
[2]焦志伦,金红,刘秉镰,等.大数据驱动下的共享单车短期需求预测——基于机器学习模型的比较分析[J].商业经济与管理, 2018(8):11.DOI:10.14134/j.cnki.cn33-1336/f.2018.08.002.
[3]甘明.基于深度学习的共享单车预测与调度研究[D].杭州电子科技大学,2022.
[4]靳海红,张帅.基于数据分析的共享单车模式与前景研究[J].商情, 2019.
🌈4 Python代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取