💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
【鲁棒性】【人工蜂群灰狼优化算法】具有QoS和鲁棒性标准的云制造双目标服务组合和最优选择研究文档
作为云制造的重要组成部分,服务组合与优化选择(SCOS)引起了众多学者的关注。尽管有大量研究致力于这一领域,但仍存在许多挑战,例如应对现实生活中的不确定性和提高决策效率的困难。为此,本文首先研究了同时考虑QoS和鲁棒性的双目标服务组合和最优选择(BoSCOS)问题,在构建了两个标准后建立了其数学模型。然后,开发了一种强化的多目标灰狼优化器(SMOGWO),以高效地解决上述模型,其中在原始MOGWO中引入了三种改进策略:(1)采用基于对立的学习(OBL)策略来提高初始种群的质量;(2)设计了一种领导者更新策略,以探索更好的搜索领导者,平衡开发能力和探索能力;;(3)开发了一种改进的存档策略,以保留所有可能的优势个体,从而基于帕累托优势提高种群的多样性。最后,在8个不同规模的BoSCOS问题和17个基准函数上验证了所提算法的有效性,结果表明改进策略是有效的,SMOGWO在收敛性和种群多样性方面优于其竞争对手。
关键词:云制造服务 组合与优化 选择双目标优化 鲁棒性 MOGWO人工蜂群灰狼优化算法
一、引言
作为云制造的重要组成部分,服务组合与优化选择(SCOS)在学术界和工业界均受到了广泛关注。然而,现实生活中的不确定性和提高决策效率的困难仍然是该领域面临的主要挑战。为此,本文研究了同时考虑服务质量(QoS)和鲁棒性的双目标服务组合和最优选择(BoSCOS)问题,旨在提出一种有效的解决方案。
二、问题定义与数学模型
- QoS标准:QoS是衡量服务性能的重要指标,包括响应时间、可靠性、可用性等。在云制造服务组合中,QoS标准用于评估服务组合的整体性能。
- 鲁棒性标准:鲁棒性是指服务组合在面对不确定性因素时仍能保持稳定和高效的能力。在云制造环境中,不确定性因素可能包括服务故障、资源波动等。
- 双目标服务组合和最优选择问题:本文旨在同时优化QoS和鲁棒性两个目标,提出一种双目标服务组合和最优选择模型。
三、强化的多目标灰狼优化器(SMOGWO)
为了高效地解决上述双目标服务组合和最优选择问题,本文开发了一种强化的多目标灰狼优化器(SMOGWO)。以下是SMOGWO的详细介绍:
-
灰狼优化算法(GWO)基础:
- GWO是一种基于种群的元启发式算法,模拟自然界中灰狼的领导层级和狩猎机制。
- 在GWO中,灰狼被分为四种角色:狼首领(Alpha)、狼副手(Beta)、狈顾问(Delta)和打工狼(Omega),分别代表最优解、次优解、第三优解和其他解。
-
SMOGWO的改进策略:
- 基于对立的学习(OBL)策略:用于提高初始种群的质量。通过生成与当前解对立的解,并评估其适应度,从而选择更优的解作为初始种群的一部分。
- 领导者更新策略:设计了一种新的领导者更新机制,以探索更好的搜索领导者。该策略平衡了开发能力和探索能力,有助于算法在全局搜索和局部搜索之间实现平衡。
- 改进的存档策略:用于保留所有可能的优势个体。通过基于帕累托优势对种群进行排序和选择,保留了具有不同特点的优秀解,从而提高了种群的多样性。
-
SMOGWO的实现步骤:
- 初始化种群参数,包括种群数量、最大迭代次数等。
- 根据变量的上下界随机初始化灰狼个体的位置。
- 计算每一头狼的适应度值,并确定Alpha、Beta和Delta狼的位置。
- 根据改进策略更新灰狼个体的位置。
- 更新参数,并计算每一头灰狼的适应度值。
- 判断是否到达最大迭代次数,若满足则算法停止并返回最优解;否则,继续迭代。
四、实验验证与结果分析
为了验证所提算法的有效性,本文在8个不同规模的BoSCOS问题和17个基准函数上进行了实验。实验结果表明:
- 改进策略是有效的,SMOGWO在收敛性和种群多样性方面优于其竞争对手。
- SMOGWO能够同时优化QoS和鲁棒性两个目标,为云制造服务组合和最优选择提供了一种有效的解决方案。
五、结论与展望
本文研究了具有QoS和鲁棒性标准的云制造双目标服务组合和最优选择问题,并提出了一种强化的多目标灰狼优化器(SMOGWO)来解决该问题。实验结果表明,SMOGWO在收敛性和种群多样性方面表现出色,为云制造服务组合和优化选择提供了新的思路和方法。未来,将进一步研究如何将其他优化算法与GWO相结合,以进一步提高算法的性能和适用性。
📚2 运行结果
部分代码:
function y=myfun(x)
% 目标函数
global K C_cell dy;
x=fix(x);
x1=x;
ymat201=zeros(K,1);
ymat202=zeros(K,1);
ymat203=zeros(K,1);
ymat204=zeros(K,1);
ymat205=zeros(K,1);
for k=1:K
C=C_cell{k,1};
ymat201(k,1)=C(x(k),1);
ymat202(k,1)=C(x(k),2);
ymat203(k,1)=C(x(k),3);
ymat204(k,1)=C(x(k),4);
ymat205(k,1)=C(x(k),5);
end
%Q2=0.15*prod(ymat201)+0.15*prod(ymat202)+0.25*sum(ymat203)+0.2*sum(ymat204)+0.25*sum(ymat205); %%Q(EC2)
Q2=0.25*prod(ymat201)+0.25*prod(ymat202)+0.25*sum(ymat203)+0.25*sum(ymat204); %%Q(EC1)
%F=sum(ymat205)/K;
y1=1-Q2/K; % QoS值
yy1=ymat205;
Q3=zeros(1,dy);
Q=zeros(1,K);
Pm=0.02+(0.1-0.02)*rand(K,1);
for r=1:K % K子任务数
for t=1:dy % dy 候选集数量 对其余候选服务进行遍历
x(r)=t; % x 每只狼的位置信息
if x1(r)~=x(r) % 排除出现异常的那个候选服务
ym=C(x(r),5);
Q3(t)=ym;
end
end
Q(r)=abs(max(Q3)-yy1(r));
end
Q=sum(Pm*Q);
R=sum(Q/sum(yy1));
y2=R;
y=[y1,y2];
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]杨红光,刘建生.一种结合灰狼优化和K-均值的混合聚类算法[J].江西理工大学学报, 2015, 36(5):5.
[2]张志鹏,周井泉.基于改良蜂群算法的Web服务组合优化方法[J].计算机技术与发展, 2024, 34(3):64-69.
🌈4 Matlab代码、数据下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取