深度学习的自学笔记-2


学习内容:

将AlexNet转换至paddle并成功运行、学习了VGGNet并了解到感受野、将VGGNet在paddle上运行。

对整个流程的感受:

  1. 加载数据集,datasets.ImageFolder函数加载数据集,再配合DataLoader可以对数据集进行打乱操作,同时得到数据集的迭代器以遍历所有的数据。
  2. 实例化模型,给定对应的参数。
  3. 定义损失函数,计算预测值与真实值之间的损失。
  4. 定义优化器,将模型的所有可训练参数和学习率作为参数。
  5. EPOCHS循环,指定迭代次数。
  6. 每次循环中遍历DataLoader得到的数据。
  7. 在上一个遍历中首先拿到每一个数据将输入和标签分开,再进行优化器的梯度清零,接着将输入放到模型得到输出,其次就根据定义的损失函数计算预测值和真实值之间的损失,然后对损失的反向传播,最后更新模型的权重。
  8. 验证集的表现,与7类似,不同之处在于得到模型的输出后,结果softmax得到了一组概率值,需要对输出取最大值对应的索引位置值,表示模型的预测结果,谁的概率值越大,模型就预测结果为哪一类别,这里会使用到torch.max函数,得到预测结果和真实标签后就可以对模型进行相应的评价,如acc,f1_score等等。

在VGGNet中,学会了一个新操作:通过指定列表,列表中元素为卷积参数或池化标志,控制自动生成卷积层和池化层,借助于这种方法其能够做到更加动态的定义模型。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值