使用dlib库进行轮廓绘制


前言

dlib 库的轮廓绘制功能,主要基于其强大的图像处理和机器学习算法。在进行轮廓绘制前,往往需要先通过相关算法对图像中的目标物体进行检测和定位,确定目标区域。之后,dlib 会根据目标物体在图像中的像素分布和特征,准确提取出边界信息,进而实现轮廓绘制。


一、Dlib轮廓绘制

1、什么是轮廓绘制

在Dlib中,人脸识别的轮廓绘制是指通过检测人脸的关键点位置,使用直线或曲线连接这些关键点,从而绘制出人脸的轮廓线条。这些关键点通常包括眉毛、眼睛、鼻子、嘴巴等部位的位置。通过绘制人脸轮廓,可以对人脸进行更精确的分析和识别。

2、步骤

  • 1)导入所需的库和模型
    使用Dlib库进行人脸识别,需要导入相应的库和模型文件。

  • 2)加载人脸检测器
    使用Dlib提供的人脸检测器模型,加载并初始化人脸检测器。

  • 3)读取图像
    将待处理的图像读取到内存中。

  • 4)人脸检测
    使用人脸检测器对图像进行人脸检测,获取人脸的位置信息。

  • 5)关键点定位
    使用Dlib提供的关键点检测器模型,对检测到的人脸进行关键点定位,即确定人脸的眼睛、鼻子、嘴巴等部位的位置。

  • 6)绘制轮廓线条
    通过将关键点的位置连接起来,使用直线或曲线绘制出人脸的轮廓线条。

  • 7)展示结果
    将绘制好的轮廓线条展示在图像上,并可将结果保存或显示出来。

二、案例实现

1、完整代码

import numpy as np
import dlib
import cv2
 
 
 
def drawLine(start,end):  # 将指定的点连接起来
    pts = shape[start:end]   # 索引遍历出来关键点的坐标
    for l in range(1,len(pts)):
        ptA = tuple(pts[l-1])   # 遍历第一个点开始
        ptB = tuple(pts[l])     # 遍历上一个点的后一个点
        cv2.line(image, ptA, ptB,(0,255,0),2)  # 将两个点连接起来
 
def drawConvexHull(start,end):
    # 将指定的点构成一个凸包,绘制成轮廓,一般眼睛、嘴使用凸包用来绘制
    Facial = shape[start:end + 1]   # 索引的方式获取关键点的坐标
    mouthHull = cv2.convexHull(Facial)  # 凸包函数,用于计算二维点集的凸包,凸包是覆盖所有点的最小凸多边形,返回凸包的点集,或者叫二维顶点
    cv2.drawContours(image,[mouthHull], -1,(0, 255, 0),  2)  # 绘制检测到的凸包轮廓,-1表示绘制所有轮廓
 
 
image = cv2.imread("people2.png")   # 读取图片
detector = dlib.get_frontal_face_detector()  # 构造脸部位置检测器
faces = detector(image,0)  # 检测人脸。返回检测到的人脸
# 读取人脸关键点定位模型
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
for face in faces:  # 遍历检测到人脸
    shape = predictor(image,face)  # 调用关键点检测器,获取人脸的关键点
    # 将关键点转换为坐标(x,y)的形式
    shape = np.array([[p.x,p.y] for p in shape.parts()])  # 获取每个人脸的关键点坐标
    drawConvexHull(36,41)   # 绘制右眼凸包,因为眼睛的关键点索引为36-41,凸包是覆盖所有点的最小凸多边形
    drawConvexHull(48, 59)  # 绘制左眼凸包
    drawConvexHull(48,59)   # 绘制嘴外部凸包
    drawConvexHull(60, 67)   # 绘制嘴内部凸包
 
    drawLine(0,17)   # 绘制脸颊点线,将脸上的点都连接起来
    drawLine(17, 22)
    drawLine(22, 27)
    drawLine(27, 36)
cv2.imshow("Frame",image)
cv2.waitKey()
cv2.destroyAllWindows()

在上述代码中:​

  • 首先,加载 dlib 的人脸检测器和 68 个关键点的预测模型,这是后续操作的基础。​
  • 然后,读取图像并将其转换为灰度图,以满足 dlib 算法的处理要求。​
  • 接着,使用人脸检测器在灰度图上检测人脸,获取人脸区域。​
  • 针对每个检测到的人脸,利用关键点预测模型获取关键点坐标。​
  • 从关键点中提取脸部轮廓对应的关键点,将其整理成适合cv2.drawContours函数处理的格式。​
  • 最后,使用 OpenCV 的cv2.drawContours函数在原始图像上绘制出脸部轮廓。

运行结果:

在这里插入图片描述

2、实时摄像头或视频检测

def drawLine(start,end):#将指定的点连接起水
    pts = shape[start:end]  #获取点集
    for l in range(1,len(pts)):
        ptA = tuple(pts[l-1])
        ptB = tuple(pts[l])
        cv2.line(image, ptA, ptB,(0,255,0),2)
 
def drawConvexHull(start,end):
    # 将指定的点构成一个凸包,绘制成轮廓,一般眼睛、嘴使用凸包用来绘制
    Facial = shape[start:end + 1]
    mouthHull = cv2.convexHull(Facial)  # 凸包函数
    cv2.drawContours(image,[mouthHull], -1,(0, 255, 0),  2)
 
cap = cv2.VideoCapture("笑容.mp4")
if not cap.isOpened():   # 如果打开失败
    print("Cannot open camera")
    exit()  # 终止程序
 
detector = dlib.get_frontal_face_detector()  # 构造脸部位置检测器
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
 
 
while True:
    ret, image = cap.read()
    faces = detector(image,0)  # 检测人险方位置
    # 读取入脸关键点定位模型
    for face in faces:# 对检测到的rects,还个遍历
        shape = predictor(image,face)# 获取关键点
        # 将关键点转换为坐标(x,y)的形式
        shape = np.array([[p.x,p.y] for p in shape.parts()])
        drawConvexHull(36,41)   # 绘制右眼凸包
        drawConvexHull(48, 59)  # 绘制左眼凸包
        drawConvexHull(48,59)   # 绘制嘴外部凸包
        drawConvexHull(60, 67)   # 绘制嘴内部凸包
 
        drawLine(0,17)   # 绘制脸颊点线
        drawLine(17, 22)
        drawLine(22, 27)
        drawLine(27, 36)
    cv2.imshow("Frame",image)
 
    k = cv2.waitKey(20)  # 每一帧画面执行20毫秒
    if k == 27:  # 如果键盘点击esc键,终止循环
        break
cv2.destroyAllWindows()

三、dlib 轮廓绘制的应用场景​

  • 医学影像分析:在 X 光、CT 等医学影像中,通过轮廓绘制可以清晰勾勒出病变组织、器官的边界,辅助医生进行病情诊断和治疗方案制定。​
  • 工业检测:在工业生产中,对产品进行轮廓绘制,能够快速检测产品的形状、尺寸是否符合标准,及时发现产品缺陷,提高产品质量和生产效率。​
  • 自动驾驶:在自动驾驶系统中,通过绘制道路边界、车辆、行人等物体的轮廓,帮助车辆感知周围环境,实现精准的导航和避障。​
    艺术创作与图像处理:在图像编辑软件中,利用轮廓绘制功能可以实现图像分割、特效添加等创意操作,为艺术创作提供更多可能性。

总结

通过学习和实践,我们可以利用 dlib 库高效地完成图像轮廓绘制任务,为计算机视觉相关的应用开发提供有力支持。

import cv2 as cv import numpy as np def scan_edge_demo(img): gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) gray = cv.GaussianBlur(gray,(3,3),0) scan_edge = cv.Canny(gray,60,150) return scan_edge def scan_contours(img): scan_edge =scan_edge_demo(img) aa,contours,b= cv.findContours(scan_edge,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE) cv.drawContours(img,contours,-1,(0,255,255),thickness=4) cv.imshow("scan_contours",img) src = cv.imread("E:/opencv/picture/taijie.png") cv.imshow("inital_window",src) scan_contours(src) cv.waitKey(0) cv.destroyAllWindows() 图片: 分析: 1.Opencv发现轮廓的函数原型为:findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> image, contours, hierarchy image参数表示8位单通道图像矩阵,可以是灰度图,但更常用的是二值图像,一般是经过Canny、拉普拉斯等边缘检测算子处理过的二值图像。 所以输入源需要二值化(threshold)处理或者边缘处理canny后才行 mode参数表示轮廓检索模式: ①CV_RETR_EXTERNAL:只检测最外围轮廓,包含在外围轮廓内的内围轮廓被忽略。 ②CV_RETR_LIST:检测所有的轮廓,包括内围、外围轮廓,但是检测到的轮廓不建立等级关系,彼此之间独立,没有等级关系,这就意味着这个检索模式下不存在父轮廓或内嵌轮廓。 ③CV_RETR_CCOMP:检测所有的轮廓,但所有轮廓只建立两个等级关系,外围为顶层,若外围内的内围轮廓还包含了其他的轮廓信息,则内围内的所有轮廓均归属于顶层。 ④CV_RETR_TREE:检测所有轮廓,所有轮廓建立一个等级树结构,外层轮廓包含内层轮廓,内层轮廓还可以继续包含内嵌轮廓。 method参数表示轮廓的近似方法: ①CV_CHAIN_APPROX_NONE 存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max (abs (x1 - x2), abs(y2 - y1) == 1。 ②CV_CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息。 ③CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法。 contours参数是一个list,表示存储的每个轮廓的点集合。 hierarchy参数是一个list,list中元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0] ~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。 offset参数表示每个轮廓点移动的可选偏移量。 2.Opencv绘制轮廓的函数原型为:drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]]) -> image imgae参数表示目标图像。 contours参数表示所有输入轮廓。 contourIdx参数表示绘制轮廓list中的哪条轮廓, 如果是负数,则绘制所有轮廓。 color参数表示轮廓的颜色。 thickness参数表示绘制轮廓线条粗细,如果是负数,则绘制轮廓内部。 lineType参数表示线型。 hierarchy参数表示有关层次结构的可选信息。 maxLevel参数表示绘制轮廓的最大级别。 如果为0,则仅绘制指定的轮廓。 如果为1,则该函数绘制轮廓和所有嵌套轮廓。 如果为2,则该函数绘制轮廓,所有嵌套轮廓,所有嵌套到嵌套的轮廓,等等。 仅当有可用的层次结构时才考虑此参数。 offset参数表示可选的轮廓偏移参数,该参数可按指定的方式移动所有绘制轮廓。 关于轮廓检测,什么的样的情况会被判断为轮廓呢? 答:因为在做轮廓检测之前需要进行二值化,所以对于图像的整个ROI区域只有黑白两个颜色,而下面两种情况会被检测作为轮廓: 1. 白色区域与黑色区域的边缘交接区域 2. 当背景为白色时,整个ROI区域的外边界就会被视为轮廓。(往往我们希望背景是黑色,所以如果出现这种情况时我们需要在二值化图像时对图像取反)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值