1. 二次型的基本概念
(1)二次型的定义:含有个变量
的二次齐次函数,即:
,
称为二次型,简记 或
。
备注:
①:若
为二次型,当包含
个变量时,则称
为
元二次型。
②:二次型可以只有平方项,也可以只有交叉项,也可以既有平方项又有交叉项。
③:此篇幅所说的对称矩阵皆为实对称矩阵。
(2) 二次型的矩阵形式:
对二次型原型进行处理,可得:
.
简记:.
二次型的矩阵形式,其中:
是列向量,矩阵A是对称矩阵(
)。
简要:任给一个二次型,就唯一确定一个对称矩阵;任给一个对称矩阵,就唯一确定一个二次型。
二次型与对称矩阵之间存在一一对应关系。
对称矩阵A就叫做二次型
的矩阵,二次型
就叫做对称矩阵A的二次型。
备注:
例1:已知二次型
,求解对称矩阵A。
①:平方项的系数作为对称矩阵A的主对角线元素。
![]()
![]()
。
②:交叉项的系数除以2,放在变量角标的对应位置上。
![]()
![]()
。
③:利用对称矩阵的对称性,进行填充其余位置。
例2:已知对称矩阵A,求解二次型
。
①:对称矩阵A的主对角线元素作为平方项的系数。
![]()
![]()
。
②:主对角线右上角的各元素乘以2,作为交叉项的系数。
![]()
![]()
。
③:只取主对角线右上角或左下角的元素,不能上下都取。
列3:已知给定的函数
,求解函数展开式形式。
①:若矩阵A不是对称矩阵,则采用对称化的方法先将矩阵A变为对称矩阵,然后再展开。
②:对称化方法:以主对角线为轴,轴线两侧相对应的元素,先做和,再除以2,得到对称矩阵。
例4:如何证明一个矩阵是二次型矩阵。
①:首先证明矩阵A是否可以写成二次型的矩阵形式
。
②:然后证明矩阵A是否是对称矩阵,即:
。
(3)二次型的秩:
二次型的秩就是对称矩阵A的秩,即。
(4)二次型的标准形的定义:若二次型中只含平方项(系数为任意实数),不含交叉项,
即:,
把它称为二次型的一个标准形。
备注:
①:二次型的标准形的对称矩阵是对角矩阵,对角矩阵主对角线元素为各个平方项的系数。
②:二次型的标准形不唯一。
(5)二次型的惯性指数和符号差:
1)正惯性指数:在标准形中,正系数平方项的个数,称为正惯性指数。
2)负惯性指数:在标准形中,负系数平方项的个数,称为负惯性指数。
3)符号差:在标准形中,正惯性指数与负惯性指数的差 -
,称为符号差。
备注:
①:二次型的标准形中,二次型的秩就是非零系数平方项的个数,也是正惯性指数与负惯性指数的和
+
。
②:二次型的标准形中,二次型的矩阵A的正特征值个数与正惯性指数相等,负特征值个数与负惯性指数相等。
(6)二次型的规范形的定义:若二次型的标准形的平方项系数只能是1,-1,0这三个数,
即:
则称为二次型的规范形。
备注:
①:在保证二次型的变量标号递增的前提下,1,-1,0这三个数出现的顺序不能变。
即:
系数为1的话,
只能是1或-1;
系数为-1的话,
系数只能是-1或0。
②:二次型的规范形的对称矩阵是对角矩阵,对角矩阵主对角线元素为1..1,-1...-1,0...。
③:二次型的规范形是唯一的。
④:根据规范形的定义可知,标准形的正负惯性指数一旦确认,那么规范形也就确定了。
2. 二次型的线性变换
(1)线性变换的定义:设有两组变量,
,...
和
,
,...
,则下面的关系式:
就称为,
,...
到
,
,...
的一个线性变换。
(2)线性变换的矩阵形式():
根据上述表达式进行整理可得:
简记为:。其中矩阵C称为线性变换矩阵。
(3)线性变换重要知识点:
1)已知是
,
,...
到
,
,...
的一个线性变换,
①:若|C| ≠ 0,则称是可逆的线性变换,简称可逆变换。
②:若C是正交矩阵,则称是正交的线性变换,简称正交变换。
备注:目前涉及的线性变换至少是可逆的线性变换,即:|C| ≠ 0。
2)①:
。
这就是两次线性变换。
②:都是可逆的线性变换
是可逆的线性变换。
3)二次型经过可逆的线性变换,得到的仍是二次型,且秩不变。
证明:
①:设二次型为
,
,可逆的线性变换为
,
可逆。
②:由
,
可得:
。
③:另
,则有
。
说明矩阵B满足二次型的矩阵形式。
④:对
转置,又知
,则有
。
说明
。
二次型经过可逆的线性变换,得到的仍是二次型。
⑤:
。
存在可逆矩阵
,使得
,则
。
秩不变。
3. 矩阵的合同
(1)定义:
设矩阵A和矩阵B为阶矩阵,如果存在可逆矩阵C,使得
,则称矩阵A和矩阵B是合同的,记作A
B。
(2)性质:
1)反身性:A A.
.
2)交换性:A B
B
A.
3)传递性:A B,B
C
A
C.
4)若A B,则r(A) = r(B),A
B.
5)若A B,则
=
=
.
6)若A B,则A与B的可逆性相同,若A,B都可逆时,则
.
7)若A B,则
.
小贴士:
①:矩阵等价: 矩阵A,B是同型矩阵 ,存在可逆矩阵P,Q,使得
。
②:矩阵相似: 矩阵A,B都是
阶矩阵,存在可逆矩阵P,使得
。
③:矩阵正交相似:矩阵A,B都是
阶矩阵,存在正交矩阵P,使得
。
对于正交矩阵,
,则有:
。
④:矩阵合同: 矩阵A,B都是
阶矩阵,存在可逆矩阵P,使得
。
小贴士:二次型、线性变换、矩阵合同的关系
①:二次型
,经过可逆的线性变换
,得到二次型
,其中
,则矩阵A与矩阵B合同。
②:二次型
,经过正交的线性变换
,得到二次型
,其中
,则矩阵A与矩阵B合同,
且正交相似。
4. 化二次型为标准形和规范形
(1)配方法:
1)针对二次型包含平方项的做法:
①:先配,把所有包含
的项整合到一起,配完
时,要将多余项反向修剪,其余项照抄。
②:再配(配
时不能再出现关于
的项),按照配
的方法,依此类推。
③:用,
,...
替换配好的平方项内部的式子,可得出对应的标准形。
④:先将标准形按照规范形的特性(1,-1,0)更改顺序,再用,
,...
替换标准形的平方项内部的式子,即可得出对应的规范形。
备注:
1. 针对上述③的替换方法可知,得出的标准形不唯一。
2. 求解③的线性变换时,要注意是
,而不是
。
2)针对二次型只包含交叉项的做法:
①:通过线性变换构造平方项。
②:再使用二次型包含平方项的做法求解。
备注:上述①线性变换一般取:
,
,
,
,
,依次类推。
(2)初等变换法:
解释说明:
①:根据(二次型经过可逆的线性变换,得到的仍是二次型)可得:
。
那么期望
,则此时
应该取何值?
②:因
是可逆的,则有
,把
带入
可得:
![]()
![]()
③:将
两端同时乘以单位矩阵E可得:
④:对比②和③结果可知:
第一步:对A和E做同样的初等列变换;
第二步:只对A做相应的初等行变换(相应就是指第一步对列做了哪个变换,第二步就对哪行做相同的变换);
第三步:当对称矩阵A化成对角矩阵
时,单位矩阵E化成的就是线性变换矩阵C。
备注:第一步和第二步配套使用,即列处理完,要进行相应的行处理。
⑤:获取对角矩阵
后,继续进行④的处理,直至对角矩阵
满足1...1,-1...-1,0...0,即可得出对应的规范形。
备注:
1. 任何二次型都可以通过可逆的线性变换化为标准形。
2. 任何二次型的矩阵都合同于对角矩阵。
(2)正交变换法:
解释说明:
因为二次型的矩阵为实对称矩阵,所以将二次型化为标准形或规范形,实际上就是将实对称矩阵正交对角化。
①:根据获取实对称矩阵A。
②:采用矩阵的正交对角化方法可得:正交矩阵Q和对角矩阵Λ。
③:即求实对称矩阵A的特征值,就可得出二次型的标准形。
④:即求实对称矩阵A的特征向量并经过矩阵的正交对角化,就可得到正交变换。
⑤:先将标准形按照规范形的特性更改顺序,再用,
,...
替换标准形平方项内部式子,即可得出对应的规范形。
备注:
1. 任何二次型都可以通过正交变换化为标准形
,其中
,
,...
为
阶实对称矩阵A的
个特征值。
2. 若对称矩阵为实对称矩阵:二次型的矩阵A与B合同,则A与B的正特征值个数相等。
惯性定理
3. 若对称矩阵为实对称矩阵:二次型的矩阵A与B合同,则A与B的正惯性指数相等。
惯性定理
4. 若对称矩阵为实对称矩阵:二次型的矩阵A与B合同,则A与B具有相同的规范形。
惯性定理
5. 二次型的有定性
(1)有定性的定义:设元二次型为
(
),如果对于任意的非零列向量
,
恒有,则称
为正定二次型。
恒有,则称
为负定二次型。
恒有,则称
为半正定二次型。
恒有,则称
为半负定二次型。
备注:
①:若
元二次型
的正负是确定的,则称为二次型是有定的。
②:若
元二次型
的正负不确定,则称为二次型是无定的。
(2)有定性的判别:
1)元二次型的标准形
是正定的
。
证明:
①:取
,若
是正定的,则
, 取
,若
是正定的,则
,
以此类推,取
,若
是正定的,则
.
②:若
,则
,因
,则
.
![]()
是正定的。
备注:若判定
元二次型的标准形是正定的,需要保证平方项系数都是大于0的。
2)任何正定二次型经过可逆的线性变换,仍是正定二次型。
3)元二次型
是正定的
①: 它的标准形为
,其中
。
②: 它的规范形为
,其中系数全为1。
③: 它的正惯性指数为
。
④: 对称矩阵A的所有的特征值都大于0(通过矩阵A 的正交对角化理解)。
⑤: A
E(通过二次型的规范形理解)。
⑥: 对称矩阵A的各阶顺序主子式全都大于0。
4)元二次型
是正定的,则|A| > 0,矩阵A是可逆的。
证明:因为 A
E,则有
![]()
![]()
![]()
![]()
因为C可逆,则有|C| ≠ 0,所以 |A| > 0 。
(3)正定矩阵的定义:
对于任意的非零列向量,若对称矩阵A满足
,则称 A 为正定矩阵。
(4)正定矩阵的性质:
1)若矩阵A是正定矩阵,则矩阵A是对称矩阵且(定义)。
2)若矩阵A是正定矩阵,则、
、
(
> 0)、
(
为正整数)均为正定矩阵(从特征值角度理解)。
3)若矩阵A是正定矩阵,矩阵B是同阶正定(或半正定)矩阵,则A + B也是正定矩阵。
4)若矩阵A是正定矩阵,则矩阵A主对角线上的所有元素都大于0。
5)若矩阵A是正定矩阵,存在可逆矩阵C,使得。