线性代数学习笔记之二次型

1.  二次型的基本概念


(1)二次型的定义:含有n个变量x_{1},x_{2},...x_{n}的二次齐次函数,即:

                                  f(x_{1},x_{2},...x_{n}) = a_{11}x_{1}^{2}+...+a_{nn}x_{n}^{2}+2a_{12}x_{1}x_{2}+...+2a_{n-1,n}x_{n-1}x_{n}

                                  称为二次型,简记 f(x_{1},x_{2},...x_{n})或 f

备注:

①:若f(x_{1},x_{2},...x_{n})为二次型,当包含n个变量时,则称f(x_{1},x_{2},...x_{n})n元二次型。

②:二次型可以只有平方项,也可以只有交叉项,也可以既有平方项又有交叉项。

③:此篇幅所说的对称矩阵皆为实对称矩阵。

(2) 二次型的矩阵形式:

    对二次型原型进行处理,可得:

    f(x_{1},x_{2},...,x_{n})=(x_{1},x_{2},...,x_{n})\begin{pmatrix} a_{11} &a_{12} &... &a_{1n} \\ a_{21} & a_{22} &... &a_{2n} \\ ...& ...& ... &... \\ a_{n1} &a_{n2} &... & a_{nn} \end{pmatrix}\begin{pmatrix} x_{1}\\ x_{2}\\ ...\\ x_{n} \end{pmatrix}.

    简记:f(x_{1},x_{2},...x_{n})=x^{T}Ax\Leftarrow 二次型的矩阵形式,其中:x列向量,矩阵A是对称矩阵(A^{T} = A)

    简要:任给一个二次型,就唯一确定一个对称矩阵;任给一个对称矩阵,就唯一确定一个二次型。

               \Rightarrow 二次型与对称矩阵之间存在一一对应关系。

               \Rightarrow 对称矩阵A就叫做二次型f的矩阵,二次型f就叫做对称矩阵A的二次型。

备注:

例1:已知二次型f(x_{1},x_{2},...x_{n}),求解对称矩阵A。

  ①:平方项的系数作为对称矩阵A的主对角线元素。kx_{i}^{2} \rightarrow k= a_{ii}

  ②:交叉项的系数除以2,放在变量角标的对应位置上。kx_{i}x_{j} \rightarrow \frac{k}{2}=a_{ij}。 

  ③:利用对称矩阵的对称性,进行填充其余位置。 

例2:已知对称矩阵A,求解二次型f(x_{1},x_{2},...x_{n})

  ①:对称矩阵A的主对角线元素作为平方项的系数。a_{ii} \rightarrow a_{ii}x_{i}^{2}

  ②:主对角线右上角的各元素乘以2,作为交叉项的系数。a_{ij} \rightarrow 2a_{ij}x_{i}x_{j}

  ③:只取主对角线右上角或左下角的元素,不能上下都取。

列3:已知给定的函数f(x_{1},x_{2},...x_{n})=x^{T}Ax,求解函数展开式形式。

  ①:若矩阵A不是对称矩阵,则采用对称化的方法先将矩阵A变为对称矩阵,然后再展开。

  ②:对称化方法:以主对角线为轴,轴线两侧相对应的元素,先做和,再除以2,得到对称矩阵。

例4:如何证明一个矩阵是二次型矩阵。

  ①:首先证明矩阵A是否可以写成二次型的矩阵形式x^{T}Ax

  ②:然后证明矩阵A是否是对称矩阵,即:A^{T}=A

(3)二次型的秩:

         二次型的秩就是对称矩阵A的秩,即r(f) = r(A)

(4)二次型的标准形的定义:若二次型中只含平方项(系数为任意实数),不含交叉项,

                                                 即:f(y_{1},y_{2},...y_{n}) = d_{1}y_{1}^{2}+d_{2}y_{2}^{2}+...+d_{n}y_{n}^{2}

                                                 把它称为二次型的一个标准形。

备注:

①:二次型的标准形的对称矩阵是对角矩阵,对角矩阵主对角线元素为各个平方项的系数。

②:二次型的标准形不唯一。

(5)二次型的惯性指数和符号差:

    1)正惯性指数:在标准形中,正系数平方项的个数p,称为正惯性指数。

    2)负惯性指数:在标准形中,负系数平方项的个数q,称为负惯性指数。

    3)符号差:在标准形中,正惯性指数与负惯性指数的差p - q,称为符号差。

备注:

①:二次型的标准形中,二次型的秩就是非零系数平方项的个数,也是正惯性指数与负惯性指数的和p + q

②:二次型的标准形中,二次型的矩阵A的正特征值个数与正惯性指数相等,负特征值个数与负惯性指数相等。

(6)二次型的规范形的定义:若二次型的标准形的平方项系数只能是1,-1,0这三个数,

                                                 即:f(y_{1},y_{2},...y_{n}) = y_{1}^{2}+...+y_{p}^{2}- y_{p+1}^{2}-...-y_{p+q}^{2} +0y_{p+q+1}^{2}+...+0y_{n}^{2}

                                                 则称为二次型的规范形。

备注:

①:在保证二次型的变量标号递增的前提下,1,-1,0这三个数出现的顺序不能变。

       即:y_{1}系数为1的话,y_{2}只能是1或-1;y_{1}系数为-1的话,y_{2}系数只能是-1或0。     

②:二次型的规范形的对称矩阵是对角矩阵,对角矩阵主对角线元素为1..1-1...-1,0...。

③:二次型的规范形是唯一的。

④:根据规范形的定义可知,标准形的正负惯性指数一旦确认,那么规范形也就确定了。


2.  二次型的线性变换


(1)线性变换的定义:设有两组变量x_{1}x_{2},...x_{n}y_{1}y_{2},...y_{n},则下面的关系式

                                             \left\{\begin{matrix} x_{1}=c_{11}y_{1}+c_{12}y_{2}+...+c_{1n}y_{n}\\ x_{2}=c_{21}y_{1}+c_{22}y_{2}+...+c_{2n}y_{n}\\ .........\\ x_{n}= c_{n1}y_{1}+c_{n2}y_{2}+...+c_{nn}y_{n}\\ \end{matrix}\right.

                                       就称为x_{1}x_{2},...x_{n}y_{1}y_{2},...y_{n}的一个线性变换

(2)线性变换矩阵形式(x=Cy)

         根据上述表达式进行整理可得:

                                             \begin{pmatrix} x_{1}\\ x_{2}\\ ...\\ x_{n} \end{pmatrix}=\begin{pmatrix} c_{11} & c_{12} & ...& c_{1n}\\ c_{21} & c_{22} & ...& c_{2n}\\ ...& ... & ...& ...\\ c_{n1} & c_{n2} & ...& c_{nn} \end{pmatrix}\begin{pmatrix} y_{1}\\ y_{2}\\ ...\\ y_{n} \end{pmatrix}

         简记为:x=Cy。其中矩阵C称为线性变换矩阵

(3)线性变换重要知识点:

    1)已知x=Cyx_{1}x_{2},...x_{n}y_{1}y_{2},...y_{n}的一个线性变换,

          ①:若|C| ≠ 0,则称x=Cy是可逆的线性变换,简称可逆变换。

          ②:若C是正交矩阵,则称x=Cy是正交的线性变换,简称正交变换。

备注:目前涉及的线性变换至少是可逆的线性变换,即:|C| ≠ 0。

    2)①:(x=C_{1}y,y=C_{2}z) \Leftrightarrow x=C_{1}C_{2}z\leftarrow这就是两次线性变换。

          ②:(x=C_{1}y,y=C_{2}z)都是可逆的线性变换 \Leftrightarrow x=C_{1}C_{2}z是可逆的线性变换。

    3)二次型经过可逆的线性变换,得到的仍是二次型,且秩不变。

证明:

①:设二次型为f(x_{1},x_{2},...x_{n})=x^{T}AxA^{T}=A,可逆的线性变换为x=CyC可逆。

②:由f(x_{1},x_{2},...x_{n})=x^{T}Axx=Cy可得:f(x_{1},x_{2},...x_{n})=x^{T}Ax=(Cy)^{T}ACy=y^{T}C^{T}ACy

③:另C^{T}AC = B,则有f(x_{1},x_{2},...x_{n})=x^{T}Ax=y^{T}By\leftarrow 说明矩阵B满足二次型的矩阵形式。

④:对C^{T}AC = B转置,又知A^{T}=A,则有B^{T}=(C^{T}AC)^{T} =C^{T}A^{T}C=C^{T}AC=B\leftarrow 说明B^{T}=B

\Rightarrow二次型经过可逆的线性变换,得到的仍是二次型。

⑤:r(B)=r(C^{T}AC)=r(A)\Leftarrow 存在可逆矩阵P,Q,使得PAQ=B,则r(A)=r(B)

\Rightarrow秩不变。


3.  矩阵的合同


(1)定义:

         设矩阵A和矩阵B为n阶矩阵,如果存在可逆矩阵C,使得C^{T}AC=B,则称矩阵A和矩阵B是合同的,记作A \simeq B。

(2)性质:

    1)反身性:A \simeq A.\Leftarrow E^{T}AE =A.

    2)交换性:A \simeq B \Leftrightarrow B \simeq A.

    3)传递性:A \simeq B,B \simeq C \Leftrightarrow A \simeq C.

    4)若A \simeq B,则r(A) = r(B),A \cong B.

    5)若A \simeq B,则AA^{T}\LeftrightarrowBB^{T}.

    6)若A \simeq B,则A与B的可逆性相同,若A,B都可逆时,则A^{-1} \simeq B^{-1}.

    7)若A \simeq B,则A^{T} \simeq B^{T}.

小贴士:

①:矩阵等价:       矩阵A,B是同型矩阵   ,存在可逆矩阵P,Q,使得PAQ=B

②:矩阵相似:       矩阵A,B都是n阶矩阵,存在可逆矩阵P,使得P^{-1}AP=B

③:矩阵正交相似:矩阵A,B都是n阶矩阵,存在正交矩阵P,使得P^{-1}AP=B

                                对于正交矩阵,P^{-1}=P^{T},则有:P^{T}AP=B

④:矩阵合同:       矩阵A,B都是n阶矩阵,存在可逆矩阵P,使得P^{T}AP=B

小贴士:二次型、线性变换、矩阵合同的关系

①:二次型x^{T}Ax,经过可逆的线性变换x=Cy,得到二次型y^{T}By,其中B = C^{T}AC,则矩阵A与矩阵B合同。

②:二次型x^{T}Ax,经过正交的线性变换x=Qy,得到二次型y^{T}By,其中B = Q^{T}AQ= Q^{-1}AQ,则矩阵A与矩阵B合同,

       且正交相似。


4.  化二次型为标准形和规范形


(1)配方法:

    1)针对二次型包含平方项的做法:

    ①:先配x_{1},把所有包含x_{1}的项整合到一起,配完x_{1}时,要将多余项反向修剪,其余项照抄。

    ②:再配x_{2}(配x_{2}时不能再出现关于x_{1}的项),按照配x_{1}的方法,依此类推。

    ③:用y_{1}y_{2},...y_{n}替换配好的平方项内部的式子,可得出对应的标准形。

    ④:先将标准形按照规范形的特性(1,-1,0)更改顺序,再用z_{1}z_{2},...z_{n}替换标准形的平方项内部的式子,即可得出对应的规范形。

备注:

1. 针对上述③的替换方法可知,得出的标准形不唯一。

2. 求解③的线性变换时,要注意是x = Cy,而不是y= Cx

    2)针对二次型只包含交叉项的做法:

    ①:通过线性变换构造平方项。

    ②:再使用二次型包含平方项的做法求解。

备注:上述①线性变换一般取:x_{1}=y_{1}-y_{2}x_{2}=y_{1}+y_{2}x_{3}=y_{3}x_{4}=y_{4}x_{5}=y_{5},依次类推。

(2)初等变换法:

解释说明:

①:根据(二次型经过可逆的线性变换,得到的仍是二次型)可得:C^{T}AC=B

       那么期望 C^{T}AC=\Lambda ,则此时C,\Lambda应该取何值?

②:因C是可逆的,则有C=P_{1}P_{2}...P_{s},把C带入C^{T}AC=\Lambda可得:

       (P_{1}P_{2}...P_{s})^{T}AP_{1}P_{2}...P_{s}=\Lambda \Rightarrow P_{s}^{T}...P_{2}^{T}P_{1}^{T}AP_{1}P_{2}...P_{s}=\Lambda

③:将C=P_{1}P_{2}...P_{s}两端同时乘以单位矩阵E可得:EP_{1}P_{2}...P_{s}=C

④:对比②和③结果可知:

       第一步:对A和E做同样的初等列变换;

       第二步:只对A做相应的初等行变换(相应就是指第一步对列做了哪个变换,第二步就对哪行做相同的变换);

       第三步:当对称矩阵A化成对角矩阵\Lambda时,单位矩阵E化成的就是线性变换矩阵C。

       备注:第一步和第二步配套使用,即列处理完,要进行相应的行处理。

⑤:获取对角矩阵\Lambda后,继续进行④的处理,直至对角矩阵\Lambda满足1...1,-1...-1,0...0,即可得出对应的规范形。

eg1:\begin{pmatrix} A\\ E \end{pmatrix}=\begin{pmatrix} 1 & 1 &1 \\ 1 & 2&2 \\ 1& 2&1 \\ 1& 0&0 \\ 0 & 1 &0 \\ 0 & 0&1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 &1 \\ 1 & 1&2 \\ 1& 1&1 \\ 1& -1&0 \\ 0 & 1 &0 \\ 0 & 0&1 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 &1 \\ 0 & 1&1 \\ 1& 1&1 \\ 1& -1&0 \\ 0 & 1 &0 \\ 0 & 0&1 \end{pmatrix}\rightarrow   \begin{pmatrix} 1 & 0 &0 \\ 0 & 1&1 \\ 1& 1&0 \\ 1& -1&-1 \\ 0 & 1 &0 \\ 0 & 0&1 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 &0 \\ 0 & 1&1 \\ 0& 1&0 \\ 1& -1&-1 \\ 0 & 1 &0 \\ 0 & 0&1 \end{pmatrix}

                    \rightarrow\begin{pmatrix} 1 & 0 &0 \\ 0 & 1&0 \\ 0& 1&-1 \\ 1& -1&0 \\ 0 & 1 &-1 \\ 0 & 0&1 \end{pmatrix}\rightarrow\begin{pmatrix} 1 & 0 &0 \\ 0 & 1&0 \\ 0& 0&-1 \\ 1& -1&0 \\ 0 & 1 &-1 \\ 0 & 0&1 \end{pmatrix}\Rightarrow \frac{\Lambda =\begin{pmatrix} 1 &0 &0 \\ 0& 1&0 \\ 0& 0 & -1 \end{pmatrix}}{C=\begin{pmatrix} 1& -1&0 \\ 0& 1& -1\\ 0& 0& 1 \end{pmatrix}} 

eg2=\begin{pmatrix} 1& 0 &0 \\ 0 & -3&0 \\ 0 & 0 &1 \\ * & * & *\\ * &* & *\\ *& *&* \end{pmatrix}\overset{c2 * \frac{1}{\sqrt{3}}}{\rightarrow}\begin{pmatrix} 1& 0 &0 \\ 0 & \frac{-3}{\sqrt{3}}&0 \\ 0 & 0 &1 \\ * & * & *\\ * &* & *\\ *& *&* \end{pmatrix}\overset{r2 * \frac{1}{\sqrt{3}}}{\rightarrow}\begin{pmatrix} 1& 0 &0 \\ 0 &-1&0 \\ 0 & 0 &1 \\ * & * & *\\ * &* & *\\ *& *&* \end{pmatrix}\overset{c2\leftrightarrow c3}{\rightarrow}  \begin{pmatrix} 1& 0 &0 \\ 0 &0&-1 \\ 0 & 1 &0\\ * & * & *\\ * &* & *\\ *& *&* \end{pmatrix}\overset{r2\leftrightarrow r3}{\rightarrow}\begin{pmatrix} 1& 0 &0 \\ 0 & 1 &0\\ 0 &0&-1 \\ * & * & *\\ * &* & *\\ *& *&* \end{pmatrix}

备注:

1. 任何二次型都可以通过可逆的线性变换化为标准形。

2. 任何二次型的矩阵都合同于对角矩阵。

(2)正交变换法:

解释说明:

因为二次型的矩阵为实对称矩阵,所以将二次型化为标准形或规范形,实际上就是将实对称矩阵正交对角化。

    ①:根据f(x_{1},x_{2},...x_{n})获取实对称矩阵A。

    ②:采用矩阵的正交对角化方法可得:正交矩阵Q和对角矩阵Λ

    ③:即求实对称矩阵A的特征值,就可得出二次型的标准形\lambda _{1}y_{1}^{2}+\lambda _{2}y_{2}^{2}+...+\lambda _{n}y_{n}^{2}

    ④:即求实对称矩阵A的特征向量并经过矩阵的正交对角化,就可得到正交变换x=Qy

    ⑤:先将标准形按照规范形的特性更改顺序,再用z_{1}z_{2},...z_{n}替换标准形平方项内部式子,即可得出对应的规范形。

备注:

1. 任何二次型都可以通过正交变换化为标准形\lambda _{1}y_{1}^{2}+\lambda _{2}y_{2}^{2}+...+\lambda _{n}y_{n}^{2},其中\lambda _{1},\lambda _{2},...\lambda _{n}n阶实对称矩阵A的n个特征值。

2. 若对称矩阵为实对称矩阵:二次型的矩阵A与B合同,则A与B的正特征值个数相等。\Leftarrow惯性定理

3. 若对称矩阵为实对称矩阵:二次型的矩阵A与B合同,则A与B的正惯性指数相等。\Leftarrow惯性定理

4. 若对称矩阵为实对称矩阵:二次型的矩阵A与B合同,则A与B具有相同的规范形。\Leftarrow惯性定理


5.  二次型的有定性


(1)有定性的定义:设n元二次型为f(x_{1},x_{2},...x_{n})=x^{T}Ax(A^{T}=A),如果对于任意的非零列向量x

                    恒有f(x_{1},x_{2},...x_{n})=x^{T}Ax> 0,则称f(x_{1},x_{2},...x_{n})=x^{T}Ax为正定二次型。

                    恒有f(x_{1},x_{2},...x_{n})=x^{T}Ax< 0,则称f(x_{1},x_{2},...x_{n})=x^{T}Ax为负定二次型。

                    恒有f(x_{1},x_{2},...x_{n})=x^{T}Ax\geq 0,则称f(x_{1},x_{2},...x_{n})=x^{T}Ax为半正定二次型。

                    恒有f(x_{1},x_{2},...x_{n})=x^{T}Ax\leq 0,则称f(x_{1},x_{2},...x_{n})=x^{T}Ax为半负定二次型。

备注:

①:若n元二次型f(x_{1},x_{2},...x_{n})=x^{T}Ax的正负是确定的,则称为二次型是有定的。

②:若n元二次型f(x_{1},x_{2},...x_{n})=x^{T}Ax的正负不确定,则称为二次型是无定的。

(2)有定性的判别:

    1)n元二次型的标准形f(x_{1},x_{2},...x_{n})=a_{1}x_{1}^{2}+a_{2}x_{2}^{2}+...+a_{n}x_{n}^{2}是正定的 \Leftrightarrow a_{i}>0

证明:

①:取x = (1,0,0...0),若f是正定的,则a_{1}> 0, 取x = (0,1,0...0),若f是正定的,则a_{2}> 0,

       以此类推,取x = (0,0,0...1),若f是正定的,则a_{n}> 0\Rightarrow a_{i}>0

②:若a_{i}>0,则a_{1}x_{1}^{2}+a_{2}x_{2}^{2}+...+a_{n}x_{n}^{2}\geq 0,因x\neq 0,则a_{1}x_{1}^{2}+a_{2}x_{2}^{2}+...+a_{n}x_{n}^{2}>0.\Rightarrow f是正定的。

备注:若判定n元二次型的标准形是正定的,需要保证平方项系数都是大于0的。

    2)任何正定二次型经过可逆的线性变换,仍是正定二次型。

    3)n元二次型f(x_{1},x_{2},...x_{n})=x^{T}Ax是正定的

         ①:\Leftrightarrow 它的标准形为d_{1}y_{1}^{2}+d_{2}y_{2}^{2}+...+d_{n}y_{n}^{2},其中d_{i}>0

         ②:\Leftrightarrow 它的规范形为y_{1}^{2}+y_{2}^{2}+...+y_{n}^{2},其中系数全为1。

         ③:\Leftrightarrow 它的正惯性指数为n

         ④:\Leftrightarrow 对称矩阵A的所有的特征值都大于0(通过矩阵A 的正交对角化理解)。

         ⑤:\Leftrightarrow A \simeq E(通过二次型的规范形理解)。

         ⑥:\Leftrightarrow 对称矩阵A的各阶顺序主子式全都大于0。

eg:A = \begin{pmatrix} 2 & 1 & 0\\ 1& 1 & 0\\ 0& 0& 1 \end{pmatrix}\Rightarrow |2| \to \begin{vmatrix} 2 &1 \\ 1& 1 \end{vmatrix}\to\begin{vmatrix} 2 & 1 & 0\\ 1& 1 & 0\\ 0& 0& 1 \end{vmatrix}> 0

    4)n元二次型f(x_{1},x_{2},...x_{n})=x^{T}Ax是正定的,则|A| > 0,矩阵A是可逆的。

证明:因为 A \simeq E,则有C^{T}AC=E \Rightarrow A= (C^{T})^{-1}C^{-1} \Rightarrow |A|= |(C^{T})^{-1}||C^{-1}|

           因为C可逆,则有|C| ≠ 0,所以 |A| > 0 。

(3)正定矩阵的定义:

         对于任意的非零列向量x,若对称矩阵A满足x^{T}Ax>0,则称 A 为正定矩阵。

(4)正定矩阵的性质:

    1)若矩阵A是正定矩阵,则矩阵A是对称矩阵且x^{T}Ax>0(定义)。

    2)若矩阵A是正定矩阵,则A^{-1}A^{*}kA(k > 0)、A^{k}(k为正整数)均为正定矩阵(从特征值角度理解)。

    3)若矩阵A是正定矩阵,矩阵B是同阶正定(或半正定)矩阵,则A + B也是正定矩阵。

    4)若矩阵A是正定矩阵,则矩阵A主对角线上的所有元素都大于0。

    5)若矩阵A是正定矩阵,存在可逆矩阵C,使得A = C^{T}C


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值