概率论第七章 参数估计 点估计、区间估计(置信区间)

一、点估计

\hat{\theta } 称为θ帽(θhat)


无偏估计量:

即:若θ的估计量\hat{\theta }的数学期望E(\hat{\theta })等于θ,则称θ的估计量\hat{\theta }=\hat{\theta }(X1,X2,...,Xn)是未知参数θ的无偏估计量。


 题型:求数学期望

题型:证明A是B的无偏估计量

 关键还是求数学期望。若E(A)=B,则称A是B的无偏估计量。

平方和拆成3项,第一项不变,后两项合并。

第一项是\sum_{i=1}^{n}Xi^{^{2}}

第二项是\sum_{i=1}^{n}-2Xi\bar{X}=-2\bar{X}\sum_{i=1}^{n}Xi=-2\bar{X}(n\bar{X})=-2n\bar{X}^{^{2}}

第三项是\sum_{i=1}^{n}\bar{X}^{2}=n\bar{X}^{2}

第二项和第三项合并以后为-n\bar{X}^{2}


更有效估计量(近30年没考过)


一致估计量(近年没考过)

一般出现依概率收敛A\overset{P}{\rightarrow}B,就用大数定律!

回顾:切大与辛大条件不同,结论相同。

切大 条件①Xi不相关②方差有界  结论:\frac{1}{n}\sum_{i=1}^{n}Xi \overset{P}{\rightarrow}E(Xi)

辛大 条件①Xi独立同分布②期望存在  结论:\frac{1}{n}\sum_{i=1}^{n}Xi \overset{P}{\rightarrow}E(Xi)


题型:求数学期望

 题型:无偏估计量

 关键:

背出泊松分布的数学期望和方差

题型:综合较复杂。已知总体X的概率密度f(x),求总体X的分布函数F(x),求统计量\hat{\theta }的分布函数F\hat{\theta }(z),计算统计量\hat{\theta }的数学期望。


二、估计量的求法(矩估计法和最大似然估计法)

1、矩估计法:通过解方程组“总体矩=样本矩"求出要估计的未知参数。

设总体X的分布含有未知参数θ1、θ2…θk,显然E\left (X ^{k} \right ),k=1,2,3......是关于θ1、θ2…θk的函数,样本的k阶原点矩\frac{1}{n}\sum_{i=1}^{n}Xi^{k},k=1,2,3......,当k=1样本的一阶原点矩=\bar{X}

由:总体X的k阶原点矩 E\left (X ^{k} \right ),k=1,2,3...... = 样本Xi的k阶原点矩 \frac{1}{n}\sum_{i=1}^{n}Xi^{k},k=1,2,3......,可以建立k个方程组,解出k个未知参数θ1、θ2…θk。

★求k个参数的估计就列出一阶矩到k阶矩的方程,考试大纲只要求最多两个参数的估计,最多两个方程。① E(X)=\frac{1}{n}\sum_{i=1}^{n}Xi=\bar{X}    ②E(X^{2})=\frac{1}{n}Xi^{2}

原理:总体X和样本X1、X2…Xn独立同分布,所以总体X的分布中的未知参数θ1、θ2…=样本Xi的分布中的未知参数θ1、θ2…。

矩估计法不需要知道总体分布的具体分布数学形式,只要知道各阶矩存在。


2、最大似然估计法

第一步:写出似然函数L(θ)

1)总体X为离散型,似然函数L(θ) =样本概率分布全部相乘

2)总体X为连续型,似然函数L(θ) =样本概率密度全部相乘

第二步:找到未知参数θ的最大似然估计

未知参数θ的最大似然估计量\hat{\theta }=\hat{\theta }\left ( X1,X2,...,Xn \right ) ——大写Xi

未知参数θ的最大似然估计值\hat{\theta }=\hat{\theta }\left ( x1,x2,...,xn \right ) ——小写xi

易错点:

若题干给的是样本X1,X2,…Xn,答案写的是最大似然估计量\hat{\theta }=\hat{\theta }\left ( X1,X2,...,Xn \right )

若题干给的是样本观测值x1,x2,…xn,答案写的是最大似然估计值\hat{\theta }=\hat{\theta }\left ( x1,x2,...,xn \right )

最大似然估计法步骤:①写出似然函数L(θ)  ②找到最大值点:似然函数取对数后,再对θ求导,使导数为0,找到最大值点\hat{\theta } / 利用单调性,找出似然函数的最大值点\hat{\theta }


题型:已知总体X服从的分布带有两个未知参数μ和\sigma ^{2} 

(1)求μ和\sigma ^{2}的矩估计(2)求μ和\sigma ^{2}的最大似然估计

 规范写法:解得μ的矩估计\hat{\mu }=…,解得\sigma的矩估计\hat{\sigma }=…

注意:似然函数表达式中的(Xi-\mu)^{2}不要化开,那样会变复杂

 似然函数取对数时,要以\sigma ^{2}整体的方式出现,不要以\sigma单个出现。把ln\frac{1}{\sigma }=-ln\sigma凑成-ln\left [ \left ( \sigma ^{2}\right )^{\frac{1}{2}}\right ]=-\frac{1}{2}ln\left ( \sigma ^{2}\right )

题型:总体X服从指数分布(连续型),求参数λ的最大似然估计值

题型:似然函数的最大值点不是驻点的情况,总体X服从均匀分布(连续型),求未知参数θ的最大似然估计

题型:总体X是离散型,总体X的分布有未知参数θ,样本值具体知道——可以解出估计值\hat{\theta }的具体数值 

易错点:

题干给的是样本X1,X2,…Xn,答案写的是最大似然估计量\hat{\theta }=\hat{\theta }\left ( X1,X2,...,Xn \right )

题干给的是样本观测值x1,x2,…xn,答案写的是最大似然估计值\hat{\theta }=\hat{\theta }\left ( x1,x2,...,xn \right )


三、区间估计

最近1~2年考过1~2次

1、置信区间(或区间估计)

θ的1-α置信区间:(θ1,θ2),

P{θ1<θ<θ2}=1-α——通俗来说,估计两个值θ1和θ2,能把未知参数θ套住的概率是1-α。

置信水平(置信度)用1-α表示,表示参数的真实值落在置信区间中的概率(测量值的可信程度)。题目常给定的置信水平为0.95。(1-α=0.95,则α=0.05)


2、一个正态总体的区间估计

直接背住这两个1-α置信区间(两种情况:μ未知、\sigma^{2}已知μ未知、\sigma^{2}未知

置信区间的计算取决于选用的统计量——置信区间是一个随机的区间,这里的随机是指端点为随机变量这个随机变量通常是一个统计量,当抽取不同的样本时对应不同的值,从而对应不同的区间。

1)μ未知、\sigma^{2}已知时,选用一个正态总体的统计量分布:

2)μ未知、\sigma^{2}未知时(S已知),选用一个正态总体的统计量分布:

推导过程:

1、μ未知、\sigma^{2}已知时,求μ的1-α置信区间:

标准正态分布的概率密度\varphi (x)图像:u_{\frac{\alpha }{2}}为标准正态分布的上α/2分位点:满足P{X>u_{\frac{\alpha }{2}}}= \frac{\alpha }{2}

U~N(0,1),由图像可明显看出U的1-α置信区间两个端点为-u_{\frac{\alpha }{2}}u_{\frac{\alpha }{2}},即P\left \{ -u_{\frac{\alpha }{2}}< U<u_{\frac{\alpha }{2}} \right \}=1-\alpha

P\left \{ -u_{\frac{\alpha }{2}}< U<u_{\frac{\alpha }{2}} \right \}=P\left \{ -u_{\frac{\alpha }{2}}< \frac{\bar{X}-\mu }{\sigma /\sqrt{n}}<u_{\frac{\alpha }{2}}\right \}=P\left \{ -u_{\frac{\alpha }{2}}\frac{\sigma }{\sqrt{n}}< \bar{X}-\mu< u_{\frac{\alpha }{2}}\frac{\sigma }{\sqrt{n}} \right \}=P\left \{ \bar{X} -u_{\frac{\alpha }{2}}\frac{\sigma }{\sqrt{n}}< \mu <\bar{X} +u_{\frac{\alpha }{2}}\frac{\sigma }{\sqrt{n}} \right \}=1-\alpha

可以推出μ的1-α置信区间为\left ( \bar{X} -u_{\frac{\alpha }{2}}\frac{\sigma }{\sqrt{n}},\bar{X} +u_{\frac{\alpha }{2}}\frac{\sigma }{\sqrt{n}}\right )

①求出样本均值\bar{X}  ②查表得标准正态分布上\frac{\alpha }{2}分位点的值u_{\frac{\alpha }{2}},根据已知的\sigma和n计算出u_{\frac{\alpha }{2}}\frac{\sigma }{\sqrt{n}} ③用样本均值\bar{X}加、减u_{\frac{\alpha }{2}}\frac{\sigma }{\sqrt{n}},得到置信区间的两个端点。

2、μ未知、\sigma^{2}未知,S已知时,求μ的1-α置信区间:

,t分布的概率密度f(x)图像:

同理可得μ的1-α置信区间为\left ( \bar{X} -t_{\frac{\alpha }{2}}\left ( n-1 \right )\frac{S }{\sqrt{n}},\bar{X} +t_{\frac{\alpha }{2}}\left ( n-1 \right )\frac{S }{\sqrt{n}}\right )

①求出样本均值\bar{X}  ②查表得t分布上\frac{\alpha }{2}分位点的值t_{\frac{\alpha }{2}}\left ( n-1 \right ),根据已知的S和n计算出t_{\frac{\alpha }{2}}\left ( n-1 \right )\frac{S}{\sqrt{n}} ③用样本均值\bar{X}加、减t_{\frac{\alpha }{2}}\left ( n-1 \right )\frac{S}{\sqrt{n}},得到置信区间的两个端点。


题型:μ未知,\sigma ^{2}已知,求参数μ的置信水平为0.95的置信区间

直接代置信区间的计算公式:

题型:μ未知,\sigma ^{2}已知,求参数μ的置信水平为0.95的置信区间 

直接代置信区间的计算公式:

★题型:综合题,出现随机变量函数Y=lnx


(2)直接代置信区间的计算公式,这里要特别注意样本均值\bar{y}的计算!

(3)比较巧妙!由(2)小题的结论,一步一步凑出置信区间的形式

题型:求连续型总体的数学期望 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值